• Andrich, P., , P. Delecluse, , C. Levy, , and G. Madec, 1988: A multitasked general circulation model of the ocean. Science and Engineering on Cray Supercomputer: Proc. of the Fourth Int. Symp., Minneapolis, MN, Cray Research, Inc., 407–428.

  • Arhan, M., 1990: The North Atlantic Current and Subarctic Intermediate Water. J. Mar. Res., 48 , 109144.

  • Blanke, B., , and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., , and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a meso-beta scale model. Mon. Wea. Rev., 117 , 18721890.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., , and R. Sadourny, 2001: Dynamique de l’atmosphère et de l’océan. Edition de l’Ecole Polytechnique, Département de Mécanique, 235 pp.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K. E., , and M. C. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res., 9 , 15211543.

  • Brisson, A., , P. Leborgne, , A. Marsouin, , and T. Moreau, 1994: Surface irradiances calculated from Meteosat sensor data during SOFIA-ASTEX. Int. J. Remote Sens., 15 , 197203.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., , and S. Planton, 1998: 3D ocean mesoscale simulation using data from the SEMAPHORE experiment: Mixed layer heat budget. J. Geophys. Res., 103 , 25812599.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., , A. Brut, , D. Bourras, , H. Giordani, , A. Paci, , L. Prieur, , and G. Reverdin, 2005: A one-year sea surface heat, freshwater, and momentum budget in the northeastern Atlantic Basin during the Pomme Experiment: Part I: Flux estimates. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1981: Normal mode initialisation. Rev. Geophys. Space Phys., 19 , 450468.

  • De Mey, P., , and Y. Ménard, 1989: Synoptic analysis and dynamics adjustment of GEOS-3 and Seasat altimeter eddy fields in the northwest Atlantic. J. Geophys. Res., 94 , 62216230.

    • Search Google Scholar
    • Export Citation
  • Dombrowsky, E., , and P. De Mey, 1992: Continuous assimilation in an open domain of the northeast Atlantic. I: Methodology and application to Athena-88. J. Geophys. Res., 97 , 97199731.

    • Search Google Scholar
    • Export Citation
  • Dourado, M. S., , and G. Caniaux, 2001: Surface heat budget in an oceanic simulation using data from TOGA COARE. J. Geophys. Res., 106 , 1662316640.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., , Y. Grégoris, , and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site. J. Geophys. Res., 95 , 1617916193.

    • Search Google Scholar
    • Export Citation
  • Gavart, M., 1996: Modélisation et assimilation de données dans un modèle de circulation océanique à méso-echelle: Application à la campagne SEMAPHORE. Ph.D. thesis, Université Paul Sabatier.

  • Gavart, M., , and P. De Mey, 1997: Isopycnal EOFs in the Ázores current region: A statistical tool for dynamical analysis and assimilation. J. Phys. Oceanogr., 27 , 21462157.

    • Search Google Scholar
    • Export Citation
  • Gavart, M., , P. De Mey, , and G. Caniaux, 1999: Assimilation of satellite altimeter data in a primitive-equation model of the Azores–Madeira region. Dyn. Atmos. Oceans, 29 , 217254.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., , and S. Planton, 2000: Modeling and analysis of ageostrophic circulation over the Azores oceanic front during the SEMAPHORE experiment. Mon. Wea. Rev., 128 , 22702287.

    • Search Google Scholar
    • Export Citation
  • Hamming, R. W., 1989: Digital Filters. Prentice Hall, 284 pp.

  • Hiroyuki, T., , and T. Yasuda, 2004: Formation and circulation of mode waters of the North Pacific in a high-resolution GCM. J. Phys. Oceanogr., 34 , 399415.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. International Geophysics Series, Academic Press, 392 pp.

  • Josse, P., 1999: Modélisation couplée Océan-Atmosphère à méso-échelle: Application à la campagne SEMAPHORE. Ph.D. thesis, Université Paul Sabatier, 226 pp.

  • Kantha, L. H., , and C. A. Clayson, 1994: An improved mixed layer model for geosphysical applications. J. Geophys. Res., 25 , 235266.

  • Lapidus, L., , and G. F. Pinder, 1982: Numerical Solution of Partial Differential Equations in Science and Egineering. Wiley-Interscience and John Wiley and Sons, 452 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. Doney, 1994: Ocean vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 1999: Data assimilation via error subspace statistical estimation. Part II: Middle Atlantic Bight Shelfbreak Front simulation and ESSE validation. Mon. Wea. Rev., 127 , 14081432.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., , and A. R. Robinson, 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127 , 13851407.

    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., , G. A. Miles, , and D. J. Gauntlett, 1981: The impact of FGGE data coverage and improved numerical techniques in numerical weather prediction in the Australian region. Quart. J. Roy. Meteor. Soc., 107 , 627642.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Lévy, M., , M. Gavart, , L. Mémery, , G. Caniaux, , and A. Paci, 2005: A 4D-mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): Results of a prognostic model. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Lozano, C. J., , A. R. Robinson, , H. G. Arango, , A. Gangopadhyay, , N. Q. Sloan, , P. J. Haley, , and W. G. Leslie, 1996: An interdisciplinary ocean prediction system: Assimilation in strategies and structured data models. Modern Approaches to Data Assimilation in Ocean Modelling, Elsevier Oceanography Series, P. Malanotte-Rizzoli, Ed., Elsevier Science, 413–452.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1985a: Initialization of a barotropic limited-area model using Laplace transform technique. Mon. Wea. Rev., 113 , 13381344.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1985b: Initialization using Laplace transforms. Quart. J. Roy. Meteor. Soc., 111 , 243258.

  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125 , 655660.

  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model, with application to normal mode inintialisation. Beitr. Phys. Atmos., 50 , 253271.

    • Search Google Scholar
    • Export Citation
  • Paci, A., , G. Caniaux, , M. Gavart, , H. Giordani, , M. Lévy, , L. Prieur, , and R. Reverdin, 2005: A high resolution simulation of the ocean during (POMME experiment). Part I: Simulation results and comparison with observations. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Paillet, J., , and M. Arhan, 1996: Shallow pycnoclines and mode water subduction in the eastern North Atlantic. J. Phys. Oceanogr., 26 , 96114.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Price, J. F., , R. A. Weller, , and R. Pinkel, 1986: Diurnal cycling: Observation and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and K. A. Kelly, 1993: Upper-ocean heat balance in the Kuroshio Extension region. J. Phys. Oceanogr., 23 , 20272041.

  • Qiu, B., , K. A. Kelly, , and T. M. Joyce, 1991: Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. J. Geophys. Res., 96 , 1849118507.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1996: Physical processes, field estimation and an approach to interdisciplinary ocean modeling. Earth Sci. Rev., 40 , 354.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., , H. G. Arango, , A. Warn-Varnas, , W. G. Leslie, , A. J. Miller, , P. J. Haley, , and C. J. Lozano, 1996: Real-time regional forecasting. Modern Approaches to Data Assimilation in Ocean Modelling, Elsevier Oceanigraphy Series, P. Malanotte-Rizzoli, Ed., Elsevier Science, 377–412.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., , P. F. J. Lermusiaux, , and N. Quincy Sloan, 1998: Data assimilation. The Sea, The Global Coastal Ocean, A. R. Robinson and K. H. Brink, Eds., Vol. 11, John Wiley and Sons, 541–594.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., , and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18 , 16011626.

  • Stramma, L., 1984: Geostrophic transport in the warm water sphere of the eastern subtropical North Atlantic. J. Mar. Res., 42 , 537558.

    • Search Google Scholar
    • Export Citation
  • Viùdez, A., , J. Tintoré, , and R. L. Haney, 1996: About the nature of the generalized omega equation. J. Atmos. Sci., 53 , 787795.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 136 3
PDF Downloads 37 37 2

A Simplified 3D Oceanic Model Assimilating Geostrophic Currents: Application to the POMME Experiment

View More View Less
  • 1 Météo-France, Toulouse, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A simplified oceanic model is developed to easily perform cheap and realistic mesoscale simulations on an annual scale. This simplified three-dimensional oceanic model is obtained by degenerating the primitive equations system by prescribing continuously analysis-derived geostrophic currents Ug into the momentum equation in substitution of the horizontal pressure gradient. Simplification is provided by a time sequence of Ug called guide, which is used as a low-resolution and low-frequency interpolator. This model is thus necessarily coupled to systems providing geostrophic currents—that is, ocean circulation models, analyzed/reanalyzed fields, or climatologies. In this model, the mass and currents fields are constrained to adjust to the geostrophic guide at all scales. The vertical velocity is deduced from the vorticity equation, which ensures the coherence between the vertical motion and the geostrophic structures evolution. Horizontal and vertical advection are the coupling processes that can be activated independently from each other and offer the possibility to (i) continuously derive a three-dimensional model when all processes are activated, (ii) understand how some retroaction loops are generated, and (iii) study development of structures as a function of the geostrophic environment. The model was tested during a 50-day lasting simulation over the Program Océan Multidisciplinaire Méso Echelle (POMME) experiment (northeast Atlantic Ocean, September 2000–October 2001). Optimal analyzed geostrophic currents were derived weekly during POMME from a quasigeostrophic model assimilating altimeter data. Comparison with independent in situ and satellite data indicates that this simulation is very realistic and does not drift, thanks to the prescribed geostrophic guide.

Corresponding author address: Hervé Giordani, Centre National de Recherches Météorologiques, 42 av. G. Coriolis, 31057 Toulouse, France. Email: herve.giordani@meteo.fr

Abstract

A simplified oceanic model is developed to easily perform cheap and realistic mesoscale simulations on an annual scale. This simplified three-dimensional oceanic model is obtained by degenerating the primitive equations system by prescribing continuously analysis-derived geostrophic currents Ug into the momentum equation in substitution of the horizontal pressure gradient. Simplification is provided by a time sequence of Ug called guide, which is used as a low-resolution and low-frequency interpolator. This model is thus necessarily coupled to systems providing geostrophic currents—that is, ocean circulation models, analyzed/reanalyzed fields, or climatologies. In this model, the mass and currents fields are constrained to adjust to the geostrophic guide at all scales. The vertical velocity is deduced from the vorticity equation, which ensures the coherence between the vertical motion and the geostrophic structures evolution. Horizontal and vertical advection are the coupling processes that can be activated independently from each other and offer the possibility to (i) continuously derive a three-dimensional model when all processes are activated, (ii) understand how some retroaction loops are generated, and (iii) study development of structures as a function of the geostrophic environment. The model was tested during a 50-day lasting simulation over the Program Océan Multidisciplinaire Méso Echelle (POMME) experiment (northeast Atlantic Ocean, September 2000–October 2001). Optimal analyzed geostrophic currents were derived weekly during POMME from a quasigeostrophic model assimilating altimeter data. Comparison with independent in situ and satellite data indicates that this simulation is very realistic and does not drift, thanks to the prescribed geostrophic guide.

Corresponding author address: Hervé Giordani, Centre National de Recherches Météorologiques, 42 av. G. Coriolis, 31057 Toulouse, France. Email: herve.giordani@meteo.fr

Save