• Alley, R. B., , P. A. Mayewski, , T. Sowers, , M. Stuiver, , K. C. Taylor, , and P. A. Clark, 1997: Holocene climate variability: A prominent widespread event 8200 years ago. Geology, 25 , 483486.

    • Search Google Scholar
    • Export Citation
  • Botta, E. F. F., , and F. W. Wubs, 1999: MRILU: An effective algebraic multilevel ILU-preconditioner for sparse matrices. SIAM J. Matrix Anal. Appl., 20 , 10071026.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 2000: Abrupt climate change: Causal constraints provided by the paleoclimate record. Earth-Sci. Rev., 51 , 137154.

  • Bryan, F. O., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323 , 301304.

  • Clark, P. U., , N. G. Pisias, , T. F. Stocker, , and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2000: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Kluwer Academic, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and W. Weijer, 2003: Stability of the global ocean circulation: The connection of equilibria in a hierarchy of models. J. Mar. Res., 61 , 725743.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , H. Öksüzŏglu, , F. W. Wubs, , and E. F. F. Botta, 2001: A fully implicit model of the three-dimensional thermohaline ocean circulation. J. Comput. Phys., 173 , 685715.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , W. Weijer, , and J. D. Neelin, 2003: Imperfections of the three-dimensional thermohaline ocean circulation: Hysteresis and unique state regimes. J. Phys. Oceanogr., 33 , 27962814.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1993: Representing the global-scale water masses in ocean general circulations models. J. Phys. Oceanogr., 23 , 15231552.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., , and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 , 50375046.

  • Hall, M., , and H. Bryden, 1982: Direct estimates of ocean heat transport. Deep-Sea Res., 29 , 339359.

  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Keller, H. B., 1977: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, P. H. Rabinowitz, Ed., Academic Press, 359–385.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , R. Burgett, , and T. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Manabe, S., , and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1 , 841866.

  • Manabe, S., , and R. J. Stouffer, 1999: Are two modes of thermohaline circulation stable? Tellus, 51A , 400411.

  • North, G. R., , R. F. Cahalan, , and J. A. Coakley, 1981: Energy balance climate models. Rev. Geophys. Space Phys., 19 , 19121.

  • Oberhuber, J. M., 1988: The budget of heat, buoyancy and turbulent kinetic energy at the surface of the Global Ocean. Max Planck Institute für Meteorologie Hamburg Rep. 15, 148 pp.

  • Prahl, M., , G. Lohmann, , and A. Paul, 2003: Influence of vertical mixing on the thermohaline hysteresis: Analysis of an OGCM. J. Phys. Oceanogr., 33 , 17071721.

    • Search Google Scholar
    • Export Citation
  • Prange, M., , V. Romanova, , and G. Lohmann, 2002: The glacial thermohaline circulation: Stable or unstable? Geophys. Res. Lett.,, 29 , 14.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378 , 145149.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12 , 799811.

  • Rahmstorf, S., 2000: The thermohaline circulation: A system with dangerous thresholds? Climate Change, 46 , 247256.

  • Rooth, C., 1982: Hydrology and ocean circulation. Progress in Oceanography, Vol. 11, Pergamon, 131–149.

  • Schiller, A., , U. Mikolajewicz, , and R. Voss, 1997: The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Climate Dyn., 13 , 325347.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , and T. F. Stocker, 1999: The stability of the thermohaline circulation in global warming experiments. J. Climate, 12 , 11171133.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33 , 151173.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 2 , 224230.

  • Trenberth, K. E., , J. G. Olson, , and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. National Center for Atmospheric Research Tech. Rep. NCAR/TN-338+STR, 93 pp.

  • Tziperman, E., 1997: Inherently unstable climate behavior due to weak thermohaline ocean circulation. Nature, 386 , 592595.

  • Tziperman, E., 2000: Proximity of the present-day thermohaline circulation to an instability threshold. J. Phys. Oceanogr., 30 , 90104.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , J. R. Toggweiler, , Y. Feliks, , and K. Bryan, 1994: Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24 , 217232.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., 1998: Multiple equilibria of the thermohaline circulation as a side effect of convective adjustment. J. Phys. Oceanogr., 28 , 305319.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , and T. M. Hughes, 1996: On the incompatibility of ocean and atmosphere and the need for flux adjustments. Climate Dyn., 12 , 141170.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., , H. A. Dijkstra, , H. Oksuzoglu, , F. W. Wubs, , and A. C. De Niet, 2003: A fully-implicit model of the global ocean circulation. J. Comput. Phys., 192 , 452470.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., , R. W. Schmitt, , H. L. Bryden, , and A. Stigebrandt, 1992: Transport of fresh water by the ocean. J. Phys. Oceanogr., 22 , 155163.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 9
PDF Downloads 62 62 6

Stability of the Global Ocean Circulation: Basic Bifurcation Diagrams

View More View Less
  • 1 Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands, and Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A study of the stability of the global ocean circulation is performed within a coarse-resolution general circulation model. Using techniques of numerical bifurcation theory, steady states of the global ocean circulation are explicitly calculated as parameters are varied. Under a freshwater flux forcing that is diagnosed from a reference circulation with Levitus surface salinity fields, the global ocean circulation has no multiple equilibria. It is shown how this unique-state regime transforms into a regime with multiple equilibria as the pattern of the freshwater flux is changed in the northern North Atlantic Ocean. In the multiple-equilibria regime, there are two branches of stable steady solutions: one with a strong northern overturning in the Atlantic and one with hardly any northern overturning. Along the unstable branch that connects both stable solution branches (here for the first time computed for a global ocean model), the strength of the southern sinking in the South Atlantic changes substantially. The existence of the multiple-equilibria regime critically depends on the spatial pattern of the freshwater flux field and explains the hysteresis behavior as found in many previous modeling studies.

Corresponding author address: Henk A. Dijkstra, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80526. Email: dijkstra@atmos.colostate.edu

Abstract

A study of the stability of the global ocean circulation is performed within a coarse-resolution general circulation model. Using techniques of numerical bifurcation theory, steady states of the global ocean circulation are explicitly calculated as parameters are varied. Under a freshwater flux forcing that is diagnosed from a reference circulation with Levitus surface salinity fields, the global ocean circulation has no multiple equilibria. It is shown how this unique-state regime transforms into a regime with multiple equilibria as the pattern of the freshwater flux is changed in the northern North Atlantic Ocean. In the multiple-equilibria regime, there are two branches of stable steady solutions: one with a strong northern overturning in the Atlantic and one with hardly any northern overturning. Along the unstable branch that connects both stable solution branches (here for the first time computed for a global ocean model), the strength of the southern sinking in the South Atlantic changes substantially. The existence of the multiple-equilibria regime critically depends on the spatial pattern of the freshwater flux field and explains the hysteresis behavior as found in many previous modeling studies.

Corresponding author address: Henk A. Dijkstra, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80526. Email: dijkstra@atmos.colostate.edu

Save