Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport

Colm Sweeney Atmospheric and Ocean Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Colm Sweeney in
Current site
Google Scholar
PubMed
Close
,
Anand Gnanadesikan NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
Matthew J. Harrison NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Matthew J. Harrison in
Current site
Google Scholar
PubMed
Close
,
Anthony J. Rosati NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Anthony J. Rosati in
Current site
Google Scholar
PubMed
Close
, and
Bonita L. Samuels NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Bonita L. Samuels in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of changes in shortwave radiation penetration depth on the global ocean circulation and heat transport is studied using the GFDL Modular Ocean Model (MOM4) with two independent parameterizations that use ocean color to estimate the penetration depth of shortwave radiation. Ten to eighteen percent increases in the depth of 1% downwelling surface irradiance levels results in an increase in mixed layer depths of 3–20 m in the subtropical and tropical regions with no change at higher latitudes. While 1D models have predicted that sea surface temperatures at the equator would decrease with deeper penetration of solar irradiance, this study shows a warming, resulting in a 10% decrease in the required restoring heat flux needed to maintain climatological sea surface temperatures in the eastern equatorial Atlantic and Pacific Oceans. The decrease in the restoring heat flux is attributed to a slowdown in heat transport (5%) from the Tropics and an increase in the temperature of submixed layer waters being transported into the equatorial regions. Calculations were made using a simple relationship between mixed layer depth and meridional mass transport. When compared with model diagnostics, these calculations suggest that the slowdown in heat transport is primarily due to off-equatorial increases in mixed layer depths. At higher latitudes (5°–40°), higher restoring heat fluxes are needed to maintain sea surface temperatures because of deeper mixed layers and an increase in storage of heat below the mixed layer. This study offers a way to evaluate the changes in irradiance penetration depths in coupled ocean–atmosphere GCMs and the potential effect that large-scale changes in chlorophyll a concentrations will have on ocean circulation.

Corresponding author address: Colm Sweeney, AOS Program, 302 Sayre Hall, P.O. Box CN710, Princeton, NJ 08544-0710. Email: csweeney@splash.princeton.edu

Abstract

The impact of changes in shortwave radiation penetration depth on the global ocean circulation and heat transport is studied using the GFDL Modular Ocean Model (MOM4) with two independent parameterizations that use ocean color to estimate the penetration depth of shortwave radiation. Ten to eighteen percent increases in the depth of 1% downwelling surface irradiance levels results in an increase in mixed layer depths of 3–20 m in the subtropical and tropical regions with no change at higher latitudes. While 1D models have predicted that sea surface temperatures at the equator would decrease with deeper penetration of solar irradiance, this study shows a warming, resulting in a 10% decrease in the required restoring heat flux needed to maintain climatological sea surface temperatures in the eastern equatorial Atlantic and Pacific Oceans. The decrease in the restoring heat flux is attributed to a slowdown in heat transport (5%) from the Tropics and an increase in the temperature of submixed layer waters being transported into the equatorial regions. Calculations were made using a simple relationship between mixed layer depth and meridional mass transport. When compared with model diagnostics, these calculations suggest that the slowdown in heat transport is primarily due to off-equatorial increases in mixed layer depths. At higher latitudes (5°–40°), higher restoring heat fluxes are needed to maintain sea surface temperatures because of deeper mixed layers and an increase in storage of heat below the mixed layer. This study offers a way to evaluate the changes in irradiance penetration depths in coupled ocean–atmosphere GCMs and the potential effect that large-scale changes in chlorophyll a concentrations will have on ocean circulation.

Corresponding author address: Colm Sweeney, AOS Program, 302 Sayre Hall, P.O. Box CN710, Princeton, NJ 08544-0710. Email: csweeney@splash.princeton.edu

Save
  • Bryan, K., and L. J. Lewis, 1979: Water mass model of the World Ocean. J. Geophys. Res., 84 , 25032517.

  • Denman, K. L., 1973: A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3 , 173184.

  • Dickey, T. D., and J. J. Simpson, 1983: The influence of optical water type on the diurnal response of the upper ocean. Tellus, 35B , 142154.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., A. H. Sobel, M. A. Cane, and R. N. Sambrotto, 2003: A role for ocean biota in tropical intraseasonal atmospheric variability. Geophys. Res. Lett., 30 .1460, doi:10.1029/2002GL016759.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, N. Gruber, and J. L. Sarmiento, 2002: Oceanic vertical exchange and new production: A comparison between models and observations. Deep-Sea Res., 49B , 363401.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, in press.

  • Gregg, W. W., and M. E. Conkright, 2002: Decadal changes in global ocean chlorophyll. Geophys. Res. Lett., 29 , 17301734.

  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 295 pp.

  • Holland, W. R., J. C. Chow, and F. O. Bryan, 1998: Application of a third-order upwind scheme in the NCAR ocean model. J. Climate, 11 , 14871493.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier Press, 194 pp.

  • Karl, D. M., R. R. Bidigare, and R. M. Letelier, 2001: Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Res., 48B , 14491470.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing—A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. R., J. J. Cullen, and T. Platt, 1983: Phytoplankton and thermal structure in the upper ocean: Consequences of nonuniformity in chlorophyll profile. J. Geophys. Res., 88C , 25652570.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., J. Pedlosky, and H. Stommel, 1983: Climatic inferences from the ventilated thermocline. Climate Change, 5 , 183191.

  • Martin, P. J., 1985: Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90 , 903916.

  • Mobley, C. D., 1994: Light and Water. Academic Press, 592 pp.

  • Morel, A., 1988: Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). J. Geophys. Res., 93 , 1074910768.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and J-F. Berthon, 1989: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationship reinvestigated in view of remote-sensing applications. Limnol. Oceanogr., 34 , 15421562.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and D. Antoine, 1994: Heating rate within the upper ocean in relation to its biooptical state. J. Phys. Oceanogr., 24 , 16521665.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45A , 19772010.

  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126 , 251273.

  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. Lewis, and A. J. Busalacchi, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15 , 470486.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28 , 20212024.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16 , 13371351.

  • Ohlmann, J. C., and D. A. Siegel, 2000: Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J. Phys. Oceanogr., 30 , 18491865.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and C. Gautier, 1996: Ocean mixed layer radiant heating and solar penetration: A global analysis. J. Climate, 9 , 22652280.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and L. Washburn, 1998: Radiant heating of the western equatorial Pacific during TOGA–COARE. J. Geophys. Res., 103 , 53795395.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM3 manual. GFDL Ocean Group Tech. Rep. 44, 680 pp.

  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11541158.

  • Rochford, P. A., A. B. Kara, A. J. Wallcraft, and R. A. Arnone, 2002: Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106 , 3092330938.

    • Search Google Scholar
    • Export Citation
  • Roeske, F., 2001: An atlas of surface fluxes based on the ECMWF reanalysis—A climatological dataset to force global ocean general circulation models. Max Planck-Institut fur Meteorologie Rep. 323, 31 pp.

  • Rosati, A., and K. Miyakoda, 1988: A general-circulation model for upper ocean simulation. J. Phys. Oceanogr., 18 , 16011626.

  • Schneider, E. K., and Z. X. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11 , 19321950.

    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., T. K. Westberry, and J. C. Ohlmann, 1999: Cloud color and ocean radiant heating. J. Climate, 12 , 11011116.

  • Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. T. Nosse, E. Fields, and Y. Zhou, 1995: Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. J. Geophys. Res., 100 , 48854891.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., and T. D. Dickey, 1981: Alternative parameterizations of downward irradiance and their dynamical significance. J. Phys. Oceanogr., 11 , 876882.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Strutton, P. G., and F. P. Chavez, 2004: Biological heating in the equatorial Pacific: Observed variability and potential for real-time calculation. J. Climate, 17 , 10971109.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1953: On conditions for the vernal blooming of phytoplankton. J. Conseil, 18 , 287295.

  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Venrick, E. L., 1992: Phytoplankton species structure in the central North Pacific—Is the edge like the center. J. Plankton Res., 14 , 665680.

    • Search Google Scholar
    • Export Citation
  • Venrick, E. L., 1999: Phytoplankton species structure in the central North Pacific, 1973–1996: Variability and persistence. J. Plankton Res., 21 , 10291042.

    • Search Google Scholar
    • Export Citation
  • Venrick, E. L., J. A. McGowan, D. R. Cayan, and T. L. Hayward, 1987: Climate and chlorophyll-a—Long-term trends in the central North Pacific Ocean. Science, 238 , 7072.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., and R. Onken, 1982: Diurnal variation and primary production in the ocean—Preliminary results of a Lagrangian ensemble model. J. Plankton Res., 4 , 735756.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., W. Barkmann, and A. Horch, 1984: Solar heating of the oceans—Diurnal, seasonal and meridional variation. Quart. J. Roy. Meteor. Soc., 110 , 633656.

    • Search Google Scholar
    • Export Citation
  • Yoder, J. A., and M. A. Kennelly, 2003: Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Biochem. Cycles, 17 .(4), 1112, doi:10.1029/2002GB001942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1291 580 41
PDF Downloads 750 229 36