Water Mass Export from Drake Passage to the Atlantic, Indian, and Pacific Oceans: A Lagrangian Model Analysis

Yann Friocourt Laboratoire de Physique des Océans, Brest, France, and the Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Yann Friocourt in
Current site
Google Scholar
PubMed
Close
,
Sybren Drijfhout Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Sybren Drijfhout in
Current site
Google Scholar
PubMed
Close
,
Bruno Blanke Laboratoire de Physique des Océans, UMR 6523 NCRS/IFREMER/UBO, Brest, France

Search for other papers by Bruno Blanke in
Current site
Google Scholar
PubMed
Close
, and
Sabrina Speich Laboratoire de Physique des Océans, UMR 6523 NCRS/IFREMER/UBO, Brest, France

Search for other papers by Sabrina Speich in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.

Corresponding author address: Y. Friocourt, Laboratoire de Physique des Océans, UBO/UFR Sciences et techniques, 6, avenue Le Gorgeu - CS 93837, 29238 Brest, Cedex 3, France. Email: yann.friocourt@univ-brest.fr

Abstract

The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.

Corresponding author address: Y. Friocourt, Laboratoire de Physique des Océans, UBO/UFR Sciences et techniques, 6, avenue Le Gorgeu - CS 93837, 29238 Brest, Cedex 3, France. Email: yann.friocourt@univ-brest.fr

Save
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27 , 10381053.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, G. Madec, and S. Roche, 1999: Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model. J. Phys. Oceanogr., 29 , 27532768.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., S. Speich, G. Madec, and K. Döös, 2001: A global diagnostic of interocean mass transfers. J. Phys. Oceanogr., 31 , 16231632.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, S. Speich, and K. Pailler, 2002: Diagnosing and picturing the north Atlantic segment of the global conveyor belt by means of an ocean general circulation model. J. Phys. Oceanogr., 32 , 14301451.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108 .8084, doi:10.129/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • De Boer, A., and D. Nof, 2004: From the Southern Ocean to the North Atlantic in the Ekman layer? Bull. Amer. Meteor. Soc., 85 , 7988.

  • De Ruijter, W., 1982: Asymptotic analysis of the Agulhas and Brazil Current systems. J. Phys. Oceanogr., 12 , 361373.

  • Donners, J., and S. Drijfhout, 2004: The Lagrangian view of South Atlantic interbasin exchange compared with inverse model results. J. Phys. Oceanogr., 34 , 10191035.

    • Search Google Scholar
    • Export Citation
  • Döös, K., 1995: Interocean exchange of water masses in the southern ocean. J. Geophys. Res., 100 , 1349913514.

  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., P. de Vries, K. Döös, and A. C. Coward, 2003: Impact of eddy-induced transport on the Lagrangian structure of the upper branch of the thermohaline circulation. J. Phys. Oceanogr., 33 , 21412155.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27 , 22192232.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 , 50375046.

  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. H., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31 , 33123330.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., P. de Vries, and Y. Friocourt, 2003: Sources of the Equatorial Undercurrent in the Atlantic in a high-resolution ocean model. J. Phys. Oceanogr., 33 , 677693.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32 , 3954.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., A. C. Coward, and A. J. G. Nurser, 2002: Spurious diapycnal mixing of the deep waters in an eddy-permitting global ocean model. J. Phys. Oceanogr., 32 , 15221535.

    • Search Google Scholar
    • Export Citation
  • Levitus, S. E., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Levitus, S. E., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA ATLAS NESDIS 4, 117 pp.

  • Levitus, S. E., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA ATLAS NESDIS 3, 99 pp.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace (IPSL) Tech. Rep. 11, Note du Pôle de Modélisation, 91 pp.

  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26 , 16551660.

  • Nof, D., 2000: Does the wind control the import and export of the South Atlantic? J. Phys. Oceanogr., 30 , 26502667.

  • Nof, D., 2002: Is there a meridional overturning cell in the Pacific and Indian Oceans? J. Phys. Oceanogr., 32 , 19471959.

  • Nof, D., 2003: The Southern Ocean’s grip on the northward meridional flow. Progress in Oceanography, Vol. 56, Pergamon, 223–247.

  • Nycander, J., K. Döös, and A. C. Coward, 2002: Chaotic and regular trajectories in the Antarctic Circumpolar Current. Tellus, 54A , 99106.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. I. Whitworth, and W. D. J. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42A , 641673.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 , C2,. 26752692.

  • Roberts, M., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28 , 20502063.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets. J. Phys. Oceanogr., 30 , 23202341.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Speich, S., B. Blanke, and G. Madec, 2001: Warm and cold water paths of a GCM thermohaline conveyor belt. Geophys. Res. Lett., 28 , 311314.

    • Search Google Scholar
    • Export Citation
  • Speich, S., B. Blanke, P. de Vries, S. Drijfhout, K. Döös, A. Ganachaud, and R. Marsh, 2002: Tasman leakage: A new route in the global ocean conveyor belt. Geophys. Res. Lett., 29 .1416, doi:10.1029/2001GL014586.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42A , 477500.

  • Valdivieso da Costa, M., and B. Blanke, 2004: Lagrangian methods for flow climatologies and trajectory error assessment. Ocean Modell., 6 , 335358.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., B. A. de Cuevas, and A. C. Coward, 1998: The first main run of the OCCAM global ocean model. James Rennell Div. Tech. Rep. 34, Southampton Oceanography Centre, Southampton, England, U.K., 50 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1004 546 213
PDF Downloads 246 60 5