Argon as a Tracer of Cross-Isopycnal Mixing in the Thermocline

Cara C. Henning University of California, Berkeley, Berkeley, California

Search for other papers by Cara C. Henning in
Current site
Google Scholar
PubMed
Close
,
David Archer University of Chicago, Chicago, Illinois

Search for other papers by David Archer in
Current site
Google Scholar
PubMed
Close
, and
Inez Fung University of California, Berkeley, Berkeley, California

Search for other papers by Inez Fung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Noble gases such as argon are unaffected by chemical reactions in the ocean interior, but a number of physical mechanisms can lead to measurable sea level atmospheric disequilibrium in subsurface waters of the ocean. One such mechanism is the mixing of waters of different temperatures, which can lead to supersaturation in the ocean interior. The authors simulate the supersaturation mixing signature in the thermocline in a global ocean general circulation model, Parallel Ocean Program model, version 1.4 (POP 1.4). In contrast to existing mixing diagnostics such as dye tracers or microstructure measurements, which yield the local, recent rate of diabatic mixing, argon disequilibrium traces an integrated lifetime history of subsurface mixing. A theoretical model of the subtropical Atlantic Ocean gyre is built, based on the competing time scales of horizontal and vertical mixing, that agrees well with the full general circulation model argon supersaturation gradient in the thermocline. These results suggest that gyre-scale argon data from the real ocean could be similarly interpreted. The variation of the argon supersaturation with diffusivity in the equatorial Pacific Ocean is also investigated.

Corresponding author address: David Archer, Dept. of Geosciences, University of Chicago, 5734 Ellis Ave., Chicago, IL 60637. Email: d-archer@uchicago.edu

Abstract

Noble gases such as argon are unaffected by chemical reactions in the ocean interior, but a number of physical mechanisms can lead to measurable sea level atmospheric disequilibrium in subsurface waters of the ocean. One such mechanism is the mixing of waters of different temperatures, which can lead to supersaturation in the ocean interior. The authors simulate the supersaturation mixing signature in the thermocline in a global ocean general circulation model, Parallel Ocean Program model, version 1.4 (POP 1.4). In contrast to existing mixing diagnostics such as dye tracers or microstructure measurements, which yield the local, recent rate of diabatic mixing, argon disequilibrium traces an integrated lifetime history of subsurface mixing. A theoretical model of the subtropical Atlantic Ocean gyre is built, based on the competing time scales of horizontal and vertical mixing, that agrees well with the full general circulation model argon supersaturation gradient in the thermocline. These results suggest that gyre-scale argon data from the real ocean could be similarly interpreted. The variation of the argon supersaturation with diffusivity in the equatorial Pacific Ocean is also investigated.

Corresponding author address: David Archer, Dept. of Geosciences, University of Chicago, 5734 Ellis Ave., Chicago, IL 60637. Email: d-archer@uchicago.edu

Save
  • Archer, D. E., G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert, M. Tobis, and R. Jacob, 2000: Atmospheric pCO2 sensitivity to the biological pump in the ocean. Global Biogeochem. Cycles, 14 , 1219–1230.

    • Search Google Scholar
    • Export Citation
  • Bieri, R. H., and M. Koide, 1972: Dissolved noble gases in the east equatorial and southeast Pacific. J. Geophys. Res., 77 , 1667–1676.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., A. Howard, Y. Cheng, and R. L. Miller, 2004: Latitude-dependent vertical mixing and the tropical thermocline in a global OGCM. Geophys. Res. Lett., 31 .L16305, doi:10.1029/2004GL019891.

    • Search Google Scholar
    • Export Citation
  • Gehrie, E., D. Archer, S. Emerson, C. Stump, and C. Henning, 2006: Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone. Geophys. Res. Lett., 33 .18608, doi:10.1029/2006GL026935.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation. J. Phys. Oceanogr., 25 , 463–474.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, N. Gruber, and J. L. Sarmiento, 2002: Oceanic vertical exchange and new production: A comparison between models and observations. Deep-Sea Res. II, 49 , 363–401.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., J. P. Dunne, R. M. Key, K. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. S. Swathi, 2004: Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochem. Cycles, 18 .GB4010, doi:10.1029/2003GB002097.

    • Search Google Scholar
    • Export Citation
  • Hamme, R. C., and S. R. Emerson, 2002: Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen, and neon. Geophys. Res. Lett., 29 .2120, doi:10.1029/2002GL015273.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. K. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34 , 2428–2443.

    • Search Google Scholar
    • Export Citation
  • Jenkins, W. J., 1998: Studying subtropical thermocline ventilation and circulation using tritium and 3He. J. Geophys. Res., 103 , 15817–15831.

    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., and K. A. Van Scoy, 1999: A basinwide estimate of vertical mixing in the upper pycnocline: Spreading of bomb tritium in the North Pacific Ocean. J. Phys. Oceanogr., 29 , 1759–1771.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27 , 2418–2447.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., and A. J. Watson, 1991: The Santa-Monica Basin Tracer Experiment—A study of diapycnal and isopycnal mixing. J. Geophys. Res., 96 , 8695–8718.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103 , 21499–21528.

  • Mignone, B. K., J. L. Sarmiento, R. D. Slater, and A. Gnanadesikan, 2004: Sensitivity of sequestration efficiency to mixing processes in the global ocean. Atmos. Energy, 29 , 1467–1478.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 1977–2010.

  • Naveira Garabato, A. C., K. I. C. Oliver, A. J. Waston, and M-J. Messias, 2004: Turbulent diapycnal mixing in the Nordic seas. J. Geophys. Res., 109 .C12010, doi:10.1029/2004JC002411.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and C. Gautier, 1996: Ocean mixed layer radiant heating and solar penetration: A global analysis. J. Climate, 9 , 2265–2280.

    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and Coauthors, 2001: Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem. Cycles, 15 , 43–60.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 93–96.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2003: Equilibration of a warm pumped lens on a β plane. J. Phys. Oceanogr., 33 , 885–899.

  • Radko, T., and J. Marshall, 2004: The leaky thermocline. J. Phys. Oceanogr., 34 , 1648–1662.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 1154–1158.

  • Robbins, P. E., and W. J. Jenkins, 1998: Observations of temporal changes of tritium-3He age in the eastern North Atlantic thermocline: Evidence for changes in ventilation? J. Mar. Res., 56 , 1125–1161.

    • Search Google Scholar
    • Export Citation
  • Robbins, P. E., J. F. Price, W. Brechner Owens, and W. J. Jenkins, 2000: The importance of lateral diffusion for the ventilation of the lower thermocline in the subtropical North Atlantic. J. Phys. Oceanogr., 30 , 67–89.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., D. Walsh, and N. Oakey, 1997: Variations in apparent mixing efficiency in the North Atlantic Central Water. J. Phys. Oceanogr., 27 , 2589–2605.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and G. K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55 , 223–275.

    • Search Google Scholar
    • Export Citation
  • Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32 , 3578–3595.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and J. R. Ledwell, 2000: Oceanographic tracer release experiments using sulphur hexafluoride. J. Geophys. Res., 105 , 14325–14337.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., T. M. Hall, and T. W. N. Haine, 2003: Relationships among tracer ages. J. Geophys. Res., 108 .3138, doi:10.1029/2002JC001325.

    • Search Google Scholar
    • Export Citation
  • Well, R., and W. Roether, 2003: Neon distribution in South Atlantic and South Pacific waters. Deep-Sea Res. I, 50 , 721–735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 872 684 201
PDF Downloads 129 41 5