Gulf Stream Variability in Five Oceanic General Circulation Models

Gaëlle de Coëtlogon Centre d’Etude Terrestre et Planétaire, IUT de Vélizy, Vélizy, France

Search for other papers by Gaëlle de Coëtlogon in
Current site
Google Scholar
PubMed
Close
,
Claude Frankignoul Laboratoire d’Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, France

Search for other papers by Claude Frankignoul in
Current site
Google Scholar
PubMed
Close
,
Mats Bentsen Nansen Environmental and Remote Sensing Center, Bergen, Norway

Search for other papers by Mats Bentsen in
Current site
Google Scholar
PubMed
Close
,
Claire Delon Laboratoire d’Aérologie, Observatoire Midi Pyrénées, Toulouse, France

Search for other papers by Claire Delon in
Current site
Google Scholar
PubMed
Close
,
Helmuth Haak Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Helmuth Haak in
Current site
Google Scholar
PubMed
Close
,
Simona Masina Istituto Nazionale di Geofisica et Vulcanologia, Bologna, Italy

Search for other papers by Simona Masina in
Current site
Google Scholar
PubMed
Close
, and
Anne Pardaens Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom

Search for other papers by Anne Pardaens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Five non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the limited model resolution, the temperature at the 200-m depth along the mean GS axis behaves similarly in most models to that observed, and it is also well correlated with the North Atlantic Oscillation (NAO), indicating that a northward (southward) GS shift lags a positive (negative) NAO phase by 0–2 yr. The northward shift is accompanied by an increase in the GS transport, and conversely the southward shift with a decrease in the GS transport. Two dominant time scales appear in the response of the GS transport to the NAO forcing: a fast time scale (less than 1 month) for the barotropic component, and a slower one (about 2 yr) for the baroclinic component. In addition, the two components are weakly coupled. The GS response seems broadly consistent with a linear adjustment to the changes in the wind stress curl, and evidence for baroclinic Rossby wave propagation is found in the southern part of the subtropical gyre. However, the GS shifts are also affected by basin-scale changes in the oceanic conditions, and they are well correlated in most models with the changes in the AMOC. A larger AMOC is found when the GS is stronger and displaced northward, and a higher correlation is found when the observed changes of the GS position are used in the comparison. The relation between the GS and the AMOC could be explained by the inherent coupling between the thermohaline and the wind-driven circulation, or by the NAO variability driving them on similar time scales in the models.

Corresponding author address: Gaëlle de Coëtlogon, Centre d’Etude Terrestre et Planétaire, IUT de Vélizy, 10–12 avenue de l’Europe, 78140 Vélizy, France. Email: gdc@cetp.ipsl.fr

Abstract

Five non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the limited model resolution, the temperature at the 200-m depth along the mean GS axis behaves similarly in most models to that observed, and it is also well correlated with the North Atlantic Oscillation (NAO), indicating that a northward (southward) GS shift lags a positive (negative) NAO phase by 0–2 yr. The northward shift is accompanied by an increase in the GS transport, and conversely the southward shift with a decrease in the GS transport. Two dominant time scales appear in the response of the GS transport to the NAO forcing: a fast time scale (less than 1 month) for the barotropic component, and a slower one (about 2 yr) for the baroclinic component. In addition, the two components are weakly coupled. The GS response seems broadly consistent with a linear adjustment to the changes in the wind stress curl, and evidence for baroclinic Rossby wave propagation is found in the southern part of the subtropical gyre. However, the GS shifts are also affected by basin-scale changes in the oceanic conditions, and they are well correlated in most models with the changes in the AMOC. A larger AMOC is found when the GS is stronger and displaced northward, and a higher correlation is found when the observed changes of the GS position are used in the comparison. The relation between the GS and the AMOC could be explained by the inherent coupling between the thermohaline and the wind-driven circulation, or by the NAO variability driving them on similar time scales in the models.

Corresponding author address: Gaëlle de Coëtlogon, Centre d’Etude Terrestre et Planétaire, IUT de Vélizy, 10–12 avenue de l’Europe, 78140 Vélizy, France. Email: gdc@cetp.ipsl.fr

Save
  • Anderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res., 22 , 583586.

  • Bentsen, M., H. Drange, T. Furevik, and T. Zhou, 2004: Simulated variability of the Atlantic meridional overturning circulation. Climate Dyn., 22 , 701720.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermohaline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22 , 14861515.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C-S., C. Smith, and J-M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., V. Kamenkovich, and A. Krupitsky, 1998: On the utility and disutility of JEBAR. J. Phys. Oceanogr., 28 , 519526.

  • Cessi, P., 1990: Recirculation and separation of boundary currents. J. Mar. Res., 48 , 135.

  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433460.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1985: An eddy resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15 , 13121324.

  • Curry, R. G., and M. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31 , 33743400.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33 , 10571082.

  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14 , 676691.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanisms of interannual to decadal variability in the North Atlantic circulation. J. Climate, 14 , 22662280.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. L. Mellor, 1992: A numerical study of the variability and the separation of the Gulf Stream induced by surface atmospheric forcing and lateral boundary flow. J. Phys. Oceanogr., 22 , 660682.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., G. L. Mellor, and R. J. Greatbach, 1995: On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res., 100 , 1055910566.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. de Coëtlogon, T. M. Joyce, and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31 , 35163529.

    • Search Google Scholar
    • Export Citation
  • Fu, L-L., and B. Qiu, 2002: Low-frequency variability of the North Pacific Ocean: The roles of boundary- and wind-driven baroclinic Rossby waves. J. Geophys. Res., 107 .3220, doi:10.1029/2001JC001131.

    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., P. Cornillon, and D. R. Watts, 1992: A test of the Parsons–Veronis hypothesis on the separation of the Gulf-Stream. J. Phys. Oceanogr., 22 , 12861301.

    • Search Google Scholar
    • Export Citation
  • Gerdes, R., and C. Köberle, 1995: On the influence of DSOW in a numerical model of the North Atlantic general circulation. J. Phys. Oceanogr., 25 , 26242642.

    • Search Google Scholar
    • Export Citation
  • Gerdes, R., A. Biastoch, and R. Redler, 2001: Salt balance of the Gulf Stream in a regional model: Implications for climate variability. Climate Dyn., 18 , 1/2. 1727.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulations of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Greatbach, R. J., A. F. Fanning, A. D. Goulding, and S. Levitus, 1991: A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res., 96 , 2200922023.

    • Search Google Scholar
    • Export Citation
  • Haak, H., J. Jungclaus, U. Mikolajewicz, and M. Latif, 2003: Formation and propagation of great salinity anomalies. Geophys. Res. Lett., 30 .1473, doi:10.1029/2003GL017065.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., and A. D. Hirschman, 1972: A numerical calculation of the circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 2 , 336354.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., F-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25 , 764786.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., C. Deser, and M. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13 , 25502569.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kelly, K., 1991: The meandering Gulf Stream as seen by the Geosat altimeter: Surface transport, position and velocity variance from 73° to 46°W. J. Geophys. Res., 96 , 1672116738.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and S. T. Gille, 1990: Gulf Stream surface transport and statistics at 69°W from the Geosat altimeter. J. Geophys. Res., 95 , 31493161.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17 , 16051614.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1994: World Ocean Atlas 1994. National Oceanographic Data Center Informal Rep. 13, CD-ROM.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA8.1 ocean general circulation model reference manual. Notes du pôle de modélisation IPSL 11, 91 pp.

  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Masina, S., P. Di Pietro, and A. Navarra, 2004: Interannual-to-decadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn., 23 , 531536.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and R. G. Williams, 1990: Cooling Parsons’ model of the separated Gulf Stream. J. Phys. Oceanogr., 20 , 19741979.

  • Osychny, V., and P. Cornillon, 2004: Properties of Rossby waves in the North Atlantic estimated from satellite data. J. Phys. Oceanogr., 34 , 6176.

    • Search Google Scholar
    • Export Citation
  • Parsons, A. T., 1969: A two-layer model of Gulf Stream separation. J. Fluid Mech., 39 , 511528.

  • Penduff, T., B. Barnier, W. Dewar, and J. O’Brien, 2004: Dynamical response of the oceanic eddy field to the North Atlantic Oscillation: A model–data comparison. J. Phys. Oceanogr., 34 , 26152629.

    • Search Google Scholar
    • Export Citation
  • Rossby, H. T., and T. Rago, 1985: Hydrographic evidence for seasonal and secular change in the Gulf Stream. IOC Tech. Rep. 30, 25–28.

  • Sato, O., and T. Rossby, 1995: Seasonal and low frequency variations in dynamic height anomaly and transport of the Gulf Stream. Deep-Sea Res., 42 , 149164.

    • Search Google Scholar
    • Export Citation
  • Sirven, J., 2005: Response of the separated western boundary current to harmonic and stochastic wind stress variations in a 1.5-layer ocean model. J. Phys. Oceanogr., 35 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary currents crossover. Part II: Low frequency internal oscillations. J. Phys. Oceanogr., 26 , 21522168.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S. P. Xie, H. Mitsudera, and A. Kubokawa, 2005: Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J. Climate, 18 , 29792995.

    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and J. A. Stephens, 1998: The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus, 50A , 134142.

  • Taylor, A. H., and A. Gangopadhyay, 2001: A simple model of interannual displacements of the Gulf Stream. J. Geophys. Res., 106 , 1384913860.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. D., and W. J. Schmitz, 1989: A limited area model of the Gulf Stream: Design, initial experiments and model-data intercomparison. J. Phys. Oceanogr., 19 , 791814.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., and D. R. Watts, 1986: The Gulf Stream dynamics experiment: Inverted echo sounder data report for the April 1983 to June 1984 deployment period. University of Rhode Island GSO Tech. Rep. 86-4, 236 pp.

  • Veronis, G., 1973: Model of the World Ocean circulation: I. wind-driven, two layer. J. Mar. Res., 31 , 228288.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Zlotnicki, V., 1991: Sea level differences across the Gulf Stream and Kuroshio Extension. J. Phys. Oceanogr., 21 , 599609.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3565 2976 71
PDF Downloads 492 126 14