• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and Y-J. G. Hsu, 1990: Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations. Mon. Wea. Rev., 118 , 19601969.

    • Search Google Scholar
    • Export Citation
  • Best, S. E., , V. O. Ivchenko, , K. J. Richards, , R. D. Smith, , and R. C. Malone, 1999: Eddies in numerical models of the Antarctic Circumpolar Current and their influence on the mean flow. J. Phys. Oceanogr., 29 , 328350.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17 , 970985.

  • Cunningham, S. A., , S. G. Alderson, , B. A. King, , and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108 .8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., , W. G. Large, , and F. O. Bryan, 1998: Surface ocean fluxes and water mass transformations in the coupled NCAR Climate System Model. J. Climate, 11 , 14201441.

    • Search Google Scholar
    • Export Citation
  • Döös, K., , and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

    • Search Google Scholar
    • Export Citation
  • Easter, R. C., 1993: Two modified versions of Bott’s positive-definite numerical advection scheme. Mon. Wea. Rev., 121 , 297304.

  • Ferrari, R., , and A. Plumb, 2003: Residual circulation in the ocean. Near Boundary Processes and Their Parameterization: Proc. 2003 ’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 219–228.

  • Ganachaud, A., , and C. Wunsch, 2000: The oceanic meridional overturning circulation, mixing, bottom water formation, and heat transport. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gent, P., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P., , J. Willebrand, , T. J. McDougall, , and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gent, P., , W. G. Large, , and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106 , 26932712.

  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27 , 22192232.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple theory for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gnanadesikan, A., , and R. W. Hallberg, 2000: The relationship of the Circumpolar Current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30 , 20132034.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , R. D. Slater, , and B. L. Samuels, 2003: Dependence of oceanic heat transport and watermass transformation on subgridscale parameterization in coarse-resolution ocean models. Geophys. Res. Lett., 30 .1967, doi:10.1029/2003GL018036.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 832842.

  • Griffies, S. M., , and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , A. Gnanadesikan, , R. C. Pacanowski, , V. D. Larichev, , R. D. Smith, , and J. K. Dukowicz, 1998: Isoneutral mixing in level-coordinate ocean models. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , R. C. Pacanowski, , and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a Z-coordinate ocean model. Mon. Wea. Rev., 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1995: Some aspects of the circulation in ocean basins with isopycnals intersecting the sloping boundaries. Ph.D. thesis, University of Washington, 244 pp.

  • Hallberg, R., 1997: Stable split time-stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135 , 946952.

  • Hallberg, R., 2000: Time integration of diapycnal diffusion and Richardson number–dependent mixing in isopycnal coordinate ocean models. Mon. Wea. Rev., 128 , 14021419.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2003: The suitability of large-scale ocean models for adapting parameterizations of boundary mixing and a description of a refined bulk mixed layer model. Near Boundary Processes and Their Parameterization: Proc. 2003 ’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 187–203.

  • Hallberg, R., 2005: A thermobaric instability of Lagrangian vertical coordinate ocean models. Ocean Modell., 8 , 279300.

  • Hallberg, R., , and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31 , 33123330.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., , and T. J. McDougall, 1998: Meridional overturning and dianeutral motion in a z-coordinate ocean model including eddy-induced advection. J. Phys. Oceanogr., 28 , 12051223.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Johnson, G. C., , and H. Bryden, 1989: On the strength of the Circumpolar Current. Deep-Sea Res., 36 , 3953.

  • Karsten, R., , and J. Marshall, 2002: Constructing the residual circulation of the Antarctic Circumpolar Current from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., , H. Jones, , and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a Circumpolar Current. J. Phys. Oceanogr., 32 , 3954.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and M. M. Nanneh, 1994: Isopycnal momentum budget of the Antarctic Circumpolar Current in the Fine Resolution Antarctic Model. J. Phys. Oceanogr., 24 , 12011223.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., , and J. Marotzke, 1999: Behavior of double-hemisphere thermohaline flows in a single basin. J. Phys. Oceanogr., 29 , 382399.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., , S. Drijfhout, , J. Marotzke, , and J. R. Scott, 2003: Sensitivity of basinwide meridional overturning to diapycnal diffusion and remote wind forcing in an idealized Atlantic–Southern Ocean geometry. J. Phys. Oceanogr., 33 , 249266.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences. Tellus, 19 , 98106.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., , and P. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31 , 14271439.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55 , 201222.

  • Marshall, J., , and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , D. Olbers, , H. Ross, , and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23 , 465487.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , E. Shuckburgh, , H. Jones, , and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • McDermott, D. A., 1996: The regulation of northern overturning by Southern Hemisphere winds. J. Phys. Oceanogr., 26 , 12341255.

  • McDougall, T. J., , and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31 , 12221246.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 2000: Does wind control the import and export of the South Atlantic? J. Phys. Oceanogr., 30 , 26502667.

  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11541158.

  • Renwick, J. A., 2004: Trends in the Southern Hemisphere polar vortex in NCEP and ECMWF reanalyses. Geophys. Res. Lett., 31 .L07209, doi:10.1029/2003GL19302.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. The Sea, E. Goldberg, Ed., Marine Modeling, Vol. 6, Wiley, 189–318.

  • Schmitz, W. J., 1996: On the World Ocean Circulation. Vol. 1: Some Global Features/North Atlantic Circulation. Woods Hole Oceanographic Institute Tech. Rep. WHOI-96-03. 141 pp.

  • Semtner, A. J., , and R. M. Chervin, 1992: Ocean general-circulation from a global eddy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B., , and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., , B. Sloyan, , and S. R. Rintoul, 2000: The diabatic Deacon Cell. J. Phys. Oceanogr., 30 , 32123222.

  • Stevens, D. P., , and V. O. Ivchenko, 1997: The zonal momentum balance in a realistic, eddy resolving general circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123 , 929951.

    • Search Google Scholar
    • Export Citation
  • Sun, S., , R. Bleck, , C. Rooth, , J. Dukowicz, , E. Chassignet, , and P. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29 , 27192729.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., , M. W. Johnson, , and R. H. Flemming, 1942: The Oceans: Their Physics, Chemistry and General Biology. Prentice Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Tansley, C., , and D. Marshall, 2001: On the dynamics of winddriven circumpolar currents. J. Phys. Oceanogr., 31 , 32583271.

  • Thompson, L., , K. Kelly, , D. Darr, , and R. Hallberg, 2002: Buoyancy and mixed layer effects on the sea surface height response in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 32 , 36573670.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. L. Samuels, 1993: New radiocarbon constraints on the upwelling of abyssal water to the ocean’s surface. The Global Carbon Cycle, M. Heimann, Ed., Springer-Verlag, 333–365.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. L. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42 , 477500.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. L. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and H. Bjornsson, 2000: Drake Passage and paleoclimate. J. Quart. Sci., 15 , 319328.

  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30 , 933954.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1996: Effect of a constant, zonal wind on wind-driven ocean circulation. J. Phys. Oceanogr., 26 , 25252528.

  • Visbeck, M., , J. Marshall, , T. Haine, , and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Warren, B., , J. LaCasce, , and P. A. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26 , 22972301.

    • Search Google Scholar
    • Export Citation
  • Whitworth III, T., , W. D. Nowlin, , and S. J. Worley, 1982: The net transport of the Antarctic Circumpolar Current through Drake Passage. J. Phys. Oceanogr., 12 , 960971.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24 , 18121826.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 237 32
PDF Downloads 156 156 32

The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-to-intermediate water cell extends farther southward by hundreds of kilometers and the deep-to-intermediate cell draws on comparatively lighter deep waters. The overturning response to changes in the winds is also sensitive to the presence of eddies. In noneddying simulations, changing the Ekman transport produces comparable changes in the overturning, much of it involving transformation of deep waters and resembling the mean circulation. In the eddy-permitting simulations, a significant fraction of the Ekman transport changes are compensated by eddy-induced transport drawing from lighter waters than does the mean overturning. This significant difference calls into question the ability of coarse-resolution ocean models to accurately capture the impact of changes in the Southern Ocean on the global ocean circulation.

Corresponding author address: Dr. Robert Hallberg, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08542. Email: robert.hallberg@noaa.gov

Abstract

The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-to-intermediate water cell extends farther southward by hundreds of kilometers and the deep-to-intermediate cell draws on comparatively lighter deep waters. The overturning response to changes in the winds is also sensitive to the presence of eddies. In noneddying simulations, changing the Ekman transport produces comparable changes in the overturning, much of it involving transformation of deep waters and resembling the mean circulation. In the eddy-permitting simulations, a significant fraction of the Ekman transport changes are compensated by eddy-induced transport drawing from lighter waters than does the mean overturning. This significant difference calls into question the ability of coarse-resolution ocean models to accurately capture the impact of changes in the Southern Ocean on the global ocean circulation.

Corresponding author address: Dr. Robert Hallberg, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08542. Email: robert.hallberg@noaa.gov

Save