Spectral Distribution of Energy Dissipation of Wind-Generated Waves due to Dominant Wave Breaking

Ian R. Young Swinburne University of Technology, Melbourne, Victoria, Australia

Search for other papers by Ian R. Young in
Current site
Google Scholar
PubMed
Close
and
Alexander V. Babanin Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia

Search for other papers by Alexander V. Babanin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper considers an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with an approximately 50% dominant-breaking rate was analyzed. Segments of the record, comprising sequences of breaking waves, were used to obtain the “breaking spectrum,” and segments of nonbreaking waves were used to obtain the “nonbreaking spectrum.” The clear visible difference between the two spectra was attributed to the dissipation due to breaking. This assumption was supported by independent measurements of total dissipation of kinetic energy in the water column at the measurement location. It is shown that the dominant breaking causes energy dissipation throughout the entire spectrum at scales smaller than the spectral peak waves. The dissipation rate at each frequency is linear in terms of the wave spectral density at that frequency, with a correction for the directional spectral width. A formulation for the spectral dissipation function able to accommodate this effect is suggested. Directional spectra of the breaking and nonbreaking waves are also considered. It is shown that directional dissipation rates at oblique angles are higher than the dissipation in the main wave propagation direction.

Corresponding author address: Dr. Alex Babanin, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia. Email: ababanin@swin.edu.au

Abstract

This paper considers an experimental attempt to estimate the spectral distribution of the dissipation due to breaking of dominant waves. A field wave record with an approximately 50% dominant-breaking rate was analyzed. Segments of the record, comprising sequences of breaking waves, were used to obtain the “breaking spectrum,” and segments of nonbreaking waves were used to obtain the “nonbreaking spectrum.” The clear visible difference between the two spectra was attributed to the dissipation due to breaking. This assumption was supported by independent measurements of total dissipation of kinetic energy in the water column at the measurement location. It is shown that the dominant breaking causes energy dissipation throughout the entire spectrum at scales smaller than the spectral peak waves. The dissipation rate at each frequency is linear in terms of the wave spectral density at that frequency, with a correction for the directional spectral width. A formulation for the spectral dissipation function able to accommodate this effect is suggested. Directional spectra of the breaking and nonbreaking waves are also considered. It is shown that directional dissipation rates at oblique angles are higher than the dissipation in the main wave propagation direction.

Corresponding author address: Dr. Alex Babanin, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia. Email: ababanin@swin.edu.au

Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Arsenyev, S. A., S. V. Dobroklonsky, R. M. Mamedov, and N. K. Shelkovnikov, 1975: Direct measurements of some characteristics of fine-scale turbulence from a stationary platform in the open sea. Izv. Atmos. Oceanic Phys, 11 , 530533.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998a: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr, 28 , 563576.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998b: Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays. Mar. Freshwater Res, 49 , 89101.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., I. R. Young, and M. L. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res, 106 , 1165911676.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr, 24 , 15501571.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., I. S. F. Jones, and J. C. Trinder, 1989: Wavenumber spectra of short gravity waves. J. Fluid Mech, 198 , 321344.

  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr, 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multi-scale measurements of ocean wave breaking probability. J. Phys. Oceanogr, 32 , 33643375.

    • Search Google Scholar
    • Export Citation
  • Capon, J., 1969: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57 , 14081418.

  • Dillon, T. M., J. G. Richman, C. G. Hansen, and M. D. Pearson, 1981: Near-surface turbulence measurements in a lake. Nature, 290 , 390392.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 2001: A nonlinear dissipation function due to wave breaking. Proc. ECMWF Workshop on Ocean Wave Forecasting, Reading, United Kingdom, ECMWF, 87–94.

  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res, 92 , 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and Y. Yuan, 1994: Wave dissipation by surface processes. Dynamics and Modelling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 143–155.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. S. Longuet-Higgins, and J. S. Turner, 1972: Whitecaps. Nature, 239 , 449451.

  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A , 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave follower field measurements of the wind input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr, in press.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr, 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Feng, H., and Y. Yeli, 1992: Theoretical study of breaking wave spectrum and its application. Breaking Waves—IUTAM Symposium, M. L. Banner and R. H. J. Grimshaw, Eds., Springer-Verlag, 277–282.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr, 34 , 10671086.

  • Hanson, J. L., and O. M. Phillips, 1999: Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr, 29 , 16331648.

  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech, 470 , 223245.

  • Hasselmann, K., 1960: Grundgleichungen der Seegangsvoraussage [The fundamental equations of sea-state prediction]. Schiffstechnik, 7 , 191195.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum. Part I. General theory. J. Fluid Mech, 12 , 481500.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1974: On the spectral disspation of ocean waves due to white capping. Bound.-Layer Meteor, 6 , 107127.

  • Holthuijsen, L. H., and T. H. C. Herbers, 1986: Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr, 16 , 290297.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: An empirical investigation of source term balance of small scale surface waves. Geophys. Res. Lett, 31 .L15301, doi:10.1029/2004GL020080.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. Xu, and J. Wu, 1989: Breaking of wind-generated waves: Measurements and characteristics. J. Fluid Mech, 202 , 177200.

    • Search Google Scholar
    • Export Citation
  • Jones, I. S. F., 1985: Turbulence below wind waves. The Ocean SurfaceWave Breaking, Turbulent Mixing and Radio Probing, Y. Toba and H. Mitsuyasu, Eds., Reidel, 437–442.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., 1981: A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr, 11 , 15051515.

  • Kitaigorodskii, S. A., 1983: On the theory of the equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr, 13 , 816826.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. A. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2002: Coupled dynamics of short wind waves and the air flow over long surface waves. J. Geophys. Res, 107 .3209, doi:10.1029/2001JC001251.

    • Search Google Scholar
    • Export Citation
  • Landau, L. D., and E. M. Lifshitz, 1986: Hydrodynamics. (in Russian). Nauka, 736 pp.

  • Leykin, I. A., and A. D. Rozenberg, 1984: Sea-tower measurements of wind-wave spectra in the Caspian Sea. J. Phys. Oceanogr, 14 , 168176.

    • Search Google Scholar
    • Export Citation
  • Liu, P. C., and A. V. Babanin, 2004: Using wavelet spectrum analysis to resolve breaking events in the wind wave time series. Ann. Geophys, 22 , 33353345.

    • Search Google Scholar
    • Export Citation
  • Liu, P. C., D. J. Schwab, and R. E. Jensen, 2002: Has wind-wave modeling reached its limit? Ocean Eng, 29 , 8198.

  • Longuet-Higgins, M. S., 1969: On wave breaking and the equilibrium spectrum of wind-generated waves. Proc. Roy. Soc. London, 310A , 151159.

    • Search Google Scholar
    • Export Citation
  • Longuett-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motions of the floating buoy. Proceedings of the Conference on Ocean Wave Spectra, Prentice Hall, 111–136.

    • Search Google Scholar
    • Export Citation
  • Manasseh, R., A. V. Babanin, C. Forbes, K. Rickards, I. Bobevski, and A. Ooi, 2006: Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Oceanic Technol, in press.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr, 24 , 20412049.

  • Melville, W. K., and P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature, 417 , 5863.

  • Melville, W. K., M. R. Loewen, and E. Lamarre, 1992: Sound production and air entrainment by breaking waves: A review of recent laboratory experiments. Breaking Waves—IUTAM Symposium, M. L. Banner and R. H. J. Grimshaw, Eds., Springer-Verlag, 139–146.

  • Meza, E., J. Zhang, and R. J. Seymour, 2000: Free-wave energy dissipation in experimental breaking waves. J. Phys. Oceanogr, 30 , 24042418.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., and J. A. Elliott, 1982: Dissipation within surface mixed layer. J. Phys. Oceanogr, 12 , 171185.

  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind generated waves. J. Fluid Mech, 4 , 426434.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech, 156 , 505531.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., F. L. Posner, and J. P. Hansen, 2001: High-range resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: Surface impulse and wave energy dissipation rates. J. Phys. Oceanogr, 31 , 450460.

    • Search Google Scholar
    • Export Citation
  • Polnikov, V. G., 1993: On a description of a wind-wave energy dissipation function. The Air–Sea Interface: Radio and Acoustic Sensing, Turbulence and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., Rosenstiel School of Marine and Atmospheric Science, University of Miami, 277–282.

    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, 331A , 735800.

    • Search Google Scholar
    • Export Citation
  • Skafel, M. G., and M. A. Donelan, 1997: Laboratory measurements of stress modulation by wave groups. Geophysica, 33 , 914.

  • Soloviev, A. V., and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res, 50A , 371395.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., N. V. Vershinsky, and V. A. Bezverchnii, 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res, 35 , 18591874.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr, 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1993: Energy loss by breaking waves. J. Phys. Oceanogr, 23 , 24982502.

  • Toba, Y., 1972: Local balance in the air-sea boundary processes. III. On the spectrum of wind waves. Oceanogr. Soc. Japan, 29 , 209220.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 1999: Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol, 16 , 15801597.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1994: On the measurement of directional wave spectra. Appl. Ocean Res, 16 , 283294.

  • Young, I. R., and M. L. Banner, 1992: Numerical experiments on the evolution of fetch limited waves. Breaking Waves—IUTAM Symposium, M. L. Banner and R. H. J. Grimshaw, Eds., Springer-Verlag, 267–275.

  • Young, I. R., and L. A. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coastal Eng, 29 , 101121.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., L. A. Verhagen, and S. K. Khatri, 1996: The growth of fetch limited waves in water of finite depth. Part 3. Directional spectra. Coastal Eng, 29 , 4778.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., M. L. Banner, M. A. Donelan, A. V. Babanin, W. K. Melville, F. Veron, and C. McCormic, 2005: An integrated system for the study of wind-wave source terms in finite-depth water. J. Atmos. Oceanic Technol, 22 , 814831.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., C. C. Tung, and N. E. Huang, 1986: Statistical characteristics of breaking waves. Wave Dynamics and Radio Probing of the Ocean Surface, O. M. Phillips and K. Hasselmann, Eds., Plenum, 265–272.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., 1966: Some aspects of nonlinear theory of surface waves (in Russian). Ph.D. thesis, Institute for Nuclear Physics, Novosibirsk, Russia.

  • Zakharov, V. E., 1968: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zhurnal Prikladnoi Mekh. Tekknich. Fiz, 3 , 8094.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., 2002: Theoretical interpretation of fetch-limited wind-driven sea observations. Preprints, Seventh Int. Workshop on Wave Hindcasting and Forecasting, Banff, AB, Canada, 286–295.

  • Zakharov, V. E., and N. Filonenko, 1967: The energy spectrum for stochastic oscillations of a fluid surface. Sov. Phys. Docl, 11 , 881884.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., and A. V. Smilga, 1981: About quasi-one dimensional spectra of weak turbulence (in Russian). Zurnal Eksp. Teor. Fiz, 81 , 13181327.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., and M. M. Zaslavskii, 1982a: Kinetic equation and Kolmogorov spectra in weak-turbulence theory of wind-generated waves. Izv. Atmos. Oceanic Phys, 18 , 970980.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., and M. M. Zaslavskii, 1982b: Integrals of input and dissipation in the weak-turbulence theory of wind-generated waves. Izv. Atmos. Oceanic Phys, 18 , 10661076.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., and M. M. Zaslavskii, 1983a: Shape of spectrum of energy carrying components of a water surface in the weak-turbulence theory of wind waves. Izv. Atmos. Oceanic Phys, 19 , 207212.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., and M. M. Zaslavskii, 1983b: Dependence of wave parameters on the wind velocity, duration of its action and fetch in the weak-turbulence theory of water waves. Izv. Atmos. Oceanic Phys, 19 , 300306.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 653 197 20
PDF Downloads 454 155 20