Tales of the Venerable Honolulu Tide Gauge

John A. Colosi Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by John A. Colosi in
Current site
Google Scholar
PubMed
Close
and
Walter Munk Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Walter Munk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface expressions of internal tides constitute a significant component of the total recorded tide. The internal component is strongly modulated by the time-variable density structure, and the resulting perturbation of the recorded tide gives a welcome look at twentieth-century interannual and secular variability. Time series of mean sea level hSL(t) and total recorded M2 vector aTT(t) are extracted from the Honolulu 1905–2000 and Hilo 1947–2000 (Hawaii) tide records. Internal tide parameters are derived from the intertidal continuum surrounding the M2 frequency line and from a Cartesian display of aTT(t), yielding aST = 16.6 and 22.1 cm, aIT = 1.8 and 1.0 cm for surface and internal tides at Honolulu and Hilo, respectively. The proposed model aTT(t) = aST + aIT cosθIT(t) is of a phase-modulated internal tide generated by the surface tide at some remote point and traveling to the tide gauge with velocity modulated by the underlying variable density structure. Mean sea level hSL(t) [a surrogate for the density structure and hence for θIT(t)] is coherent with aIT(t) within the decadal band 0.2–0.5 cycles per year. For both the decadal band and the century drift the recorded M2 amplitude is high when sea level is high, according to δaTT = O(0.1δhSL). The authors attribute the recorded secular increase in the Honolulu M2 amplitude from aTT = 16.1 to 16.9 cm between 1915 and 2000 to a 28° rotation of the internal tide vector in response to ocean warming.

+ Current affiliation: Department of Oceanography, Naval Postgraduate School, Monterey, California

Corresponding author address: John A. Colosi, Naval Postgraduate School, Dept. of Oceanography, 833 Dyer Rd., Monterey, CA 93943. Email: jacolosi@nps.edu

Abstract

Surface expressions of internal tides constitute a significant component of the total recorded tide. The internal component is strongly modulated by the time-variable density structure, and the resulting perturbation of the recorded tide gives a welcome look at twentieth-century interannual and secular variability. Time series of mean sea level hSL(t) and total recorded M2 vector aTT(t) are extracted from the Honolulu 1905–2000 and Hilo 1947–2000 (Hawaii) tide records. Internal tide parameters are derived from the intertidal continuum surrounding the M2 frequency line and from a Cartesian display of aTT(t), yielding aST = 16.6 and 22.1 cm, aIT = 1.8 and 1.0 cm for surface and internal tides at Honolulu and Hilo, respectively. The proposed model aTT(t) = aST + aIT cosθIT(t) is of a phase-modulated internal tide generated by the surface tide at some remote point and traveling to the tide gauge with velocity modulated by the underlying variable density structure. Mean sea level hSL(t) [a surrogate for the density structure and hence for θIT(t)] is coherent with aIT(t) within the decadal band 0.2–0.5 cycles per year. For both the decadal band and the century drift the recorded M2 amplitude is high when sea level is high, according to δaTT = O(0.1δhSL). The authors attribute the recorded secular increase in the Honolulu M2 amplitude from aTT = 16.1 to 16.9 cm between 1915 and 2000 to a 28° rotation of the internal tide vector in response to ocean warming.

+ Current affiliation: Department of Oceanography, Naval Postgraduate School, Monterey, California

Corresponding author address: John A. Colosi, Naval Postgraduate School, Dept. of Oceanography, 833 Dyer Rd., Monterey, CA 93943. Email: jacolosi@nps.edu

Save
  • Agnew, D. C., 1986: Detailed analysis of tide gauge data: A case history. Mar. Geodesy, 10 , 231255.

  • Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36 , 9971018.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2002: Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107 .8013, doi:10.1029/2001JC000964.

    • Search Google Scholar
    • Export Citation
  • Caccamise II, D. J., M. A. Merrifield, M. Bevis, J. Foster, Y. L. Firing, M. S. Schenewerk, F. W. Taylor, and D. A. Thomas, 2005: Sea level rise at Honolulu and Hilo Hawaii: GPS estimates of differential land motion. Geophys. Res. Lett., 32 .L03607, doi:10.1029/2004GL021380.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., 1972: Secular changes in the oceanic tide at Brest, 1711–1936. Geophys. J. Roy. Astr. Soc., 30 , 433449.

  • Chiswell, S. M., 2002: Energy levels, phase and amplitude modulation of the baroclinic tide off Hawaii. J. Phys. Oceanogr., 32 , 26402651.

    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., R. C. Beardsley, J. F. Lynch, G. Gawarkiewicz, C. S. Chiu, and A. Scotti, 2001: Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study. J. Geophys. Res., 106 , 95879601.

    • Search Google Scholar
    • Export Citation
  • Defant, A., 1932: Die Gezeiten und inneren Gezeitenwellen des Atlantischen Ozeans (The tides and inner tidal currents of the Atlantic Ocean). Deutsch Atlantische Expend. Meteor. 1925–1927, Wiss. Erg., Bd. 7, Heft 1, 318 pp.

  • Dushaw, B. D., B. D. Cornuelle, P. F. Worcester, B. M. Howe, and D. S. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25 , 631647.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., and B. Helland-Hansen, 1931: Measurements of ocean currents (Experiments in the North Atlantic). Kungl. Fysiografisca Sallskapet i Lund Forhandlingar, Vol. 1, No. 1.

    • Search Google Scholar
    • Export Citation
  • Flick, R. E., J. F. Murray, and L. C. Ewing, 2003: Trends in the U.S. Tidal Datum Statistics and Tide Range. ASCE J. Waterway, Port, Coast. Ocean Eng., 129 , 4. 155164.

    • Search Google Scholar
    • Export Citation
  • Gasiorowicz, S., 1974: Quantum Physics. John Wiley and Sons, 470 pp.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grigg, R. W., and A. T. Jones, 1997: Uplift caused by lithospheric flexure in the Hawiian archipelego as revealed by elevated coral deposits. Mar. Geol., 141 , 1125.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the World Ocean. Science, 287 , 22252229.

  • Levitus, S., J. I. Antonov, J. Wang, T. L. Delworth, K. W. Dixon, and A. J. Broccoli, 2001: Anthropogenic warming of Earth’s climate system. Science, 292 , 267270.

    • Search Google Scholar
    • Export Citation
  • Middleton, D., 1960: An Introdution to Statistical Communication Theory. McGraw-Hill, 1140 pp.

  • Mitchum, G. T., and S. M. Chiswell, 2000: Coherence of internal tide variations along the Hawaiian Ridge. J. Geophys. Res., 105 , 653661.

    • Search Google Scholar
    • Export Citation
  • Moore, J. G., 1970: Relationship between subsidence and volcanic load, Hawaii. Bull. Volcanol., 34 , 562576.

  • Moore, J. G., and D. J. Fornari, 1984: Drowned reefs as indicators of the rate of subsidence of the island of Hawaii. J. Geol., 92 , 752759.

    • Search Google Scholar
    • Export Citation
  • Moore, J. G., and D. A. Clague, 1992: Volcano growth and evolution of the island of Hawaii. Geol. Soc. Amer. Bull., 104 , 14711478.

  • Moore, J. G., B. L. Ingram, K. R. Ludwig, and D. A. Clague, 1996: Coral ages and island subsidence; Hilo drill hole. J. Geophys. Res., 101 , 1159911605.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 2003: Ocean freshening, sea level rising. Science, 300 , 20412043.

  • Munk, W., and E. C. Bullard, 1963: Patching the long-wave spectrum across the tides. J. Geophys. Res., 68 , 36273634.

  • Munk, W., and D. E. Cartwright, 1966: Tidal spectroscopy and prediction. Philos. Trans. Roy. Soc. London, 259 , 533581.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Munk, W., B. Zetler, and G. W. Groves, 1965: Tidal cusps. Geophys. J., 10 , 211219.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23 , 21012104.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean. Progress in Oceanography, Vol. 40, Pergamon, 135–162.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28 , 12591262.

    • Search Google Scholar
    • Export Citation
  • Rubin, K., C. H. Fletcher III, and C. Sherman, 2000: Fossiliferous Lana’I deposits formed by multiple events rather than a single giant tsunami. Nature, 408 , 675681.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. G., and D. C. Cox, 1992: Hawaiian Time. Hawaiian J. Hist., 26 , 207225.

  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans: Their Physics, Chemistry and General Biology. Prentice Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 2000: Ice in the Ocean. Gordon and Breach, 351 pp.

  • Watts, A. B., and U. S. ten Brink, 1989: Crustal structure flexure, and subsidence history of the Hawaiian Islands. J. Geophys. Res., 94 , 1047310500.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and A. B. Watts, 2002: Constraints on the dynamics of mantle plumes from uplift of the Hawaiian Islands. Earth Planet. Sci. Lett., 203 , 105116.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 830 200 52
PDF Downloads 381 108 18