Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge

Edward D. Zaron College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Edward D. Zaron in
Current site
Google Scholar
PubMed
Close
and
Gary D. Egbert College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Gary D. Egbert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via friction in the bottom boundary layer and form drag due to internal waves generated at topographic slopes. Sea surface height data from 364 orbit cycles of the Ocean Topography Experiment (TOPEX)/Poseidon satellite mission are used to perform inversions at eight diurnal and semidiurnal tidal frequencies. It is estimated that the barotropic M2 tide loses energy at a rate of 19 GW, of which 88% is lost within 250 km of the ridge, presumably via conversion to the internal or baroclinic tide. Uncertainty in the assumed model error and wave drag in the forward model suggest that M2 dissipation values from 18 to 25 GW are consistent with the altimetric observations. Other barotropic tidal constituents are estimated to lose a total of 5.7 GW. The spatial distribution of barotropic dissipation along the ridge is similar to that inferred from three-dimensional primitive equation models, and it is largely insensitive to details of assumed model and data errors. Dissipation at semidiurnal frequencies is most intense at the French Frigate Shoals with lesser, but significant, contributions at other sites. Diurnal tidal dissipation is concentrated to the east of the French Frigate Shoals, at the Gardner Pinnacles. Further work with three-dimensional models will be necessary to determine the fate of the energy that is removed from the barotropic tide.

Corresponding author address: Edward D. Zaron, 104 Ocean Admin. Bldg, Oregon State University, Corvallis, OR 97331. Email: ezaron@coas.oregonstate.edu

Abstract

The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via friction in the bottom boundary layer and form drag due to internal waves generated at topographic slopes. Sea surface height data from 364 orbit cycles of the Ocean Topography Experiment (TOPEX)/Poseidon satellite mission are used to perform inversions at eight diurnal and semidiurnal tidal frequencies. It is estimated that the barotropic M2 tide loses energy at a rate of 19 GW, of which 88% is lost within 250 km of the ridge, presumably via conversion to the internal or baroclinic tide. Uncertainty in the assumed model error and wave drag in the forward model suggest that M2 dissipation values from 18 to 25 GW are consistent with the altimetric observations. Other barotropic tidal constituents are estimated to lose a total of 5.7 GW. The spatial distribution of barotropic dissipation along the ridge is similar to that inferred from three-dimensional primitive equation models, and it is largely insensitive to details of assumed model and data errors. Dissipation at semidiurnal frequencies is most intense at the French Frigate Shoals with lesser, but significant, contributions at other sites. Diurnal tidal dissipation is concentrated to the east of the French Frigate Shoals, at the Gardner Pinnacles. Further work with three-dimensional models will be necessary to determine the fate of the energy that is removed from the barotropic tide.

Corresponding author address: Edward D. Zaron, 104 Ocean Admin. Bldg, Oregon State University, Corvallis, OR 97331. Email: ezaron@coas.oregonstate.edu

Save
  • Andersen, O. B., and P. Knudsen, 1997: Multi-satellite ocean tide modelling—The K1 constituent. Progress in Oceanograpy, Vol. 40, Pergamon. 197216.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., G. R. Ierley, and W. R. Young, 2002: Tidal conversion by nearly critical topography. J. Phys. Oceanogr., 32 , 29002914.

    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated waves in the open ocean. J. Geophys. Res., 80 , 320327.

  • Cartwright, D. E., and R. D. Ray, 1994: On the radiational anomaly in the global ocean tide, with reference to satellite altimetry. Oceanol. Acta, 17 , 453459.

    • Search Google Scholar
    • Export Citation
  • Craven, P., and G. Wahba, 1979: Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31 , 377403.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., W. R. Young, and S. Llewellyn Smith, 2006: Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36 , 10721084.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2002: Mapping low-mode internal tides near Hawaii using TOPEX/Poseidon altimeter data. Geophys. Res. Lett., 29 .1250, doi:10.1029/2001GL013944.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , C10. 2247522502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19 , 183204.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30 , 1907. doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99 , 2482124852.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109 .C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Golub, G., and C. Van Loan, 1989: Matrix Computations. 2d ed. Johns Hopkins University Press, 642 pp.

  • Gustafson, K. E., 2001: Comparison of the energy flux to mixing processes via baroclinic wave drag on barotropic tides. Deep-Sea Res., 48 , 22832296.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28 , 811814.

  • Jeffreys, H., 1920: Tidal friction in shallow seas. Philos. Trans. Roy. Soc. London, A221 , 239264.

  • Kang, S. K., M. G. Foreman, W. R. Crawford, and J. Y. Cherniawsky, 2000: Numerical modeling of internal tide generation along the Hawaiian Ridge. J. Phys. Oceanogr., 30 , 10831098.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2003: Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res. I, 50 , 321.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32 , 15541566.

  • Merrifield, M. A., and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107 .3179, doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Parker, R. L., and L. Shure, 1982: Efficient modeling of the earth’s magnetic field with harmonic splines. Geophys. Res. Lett., 9 , 812815.

    • Search Google Scholar
    • Export Citation
  • Petrelis, F., S. Llewellyn Smith, and W. R. Young, 2003: Tidal conversion at a submarine ridge. J. Phys. Oceanogr., 36 , 10531071.

  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23 , 21012104.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28 , 12591262.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301 , 355357.

  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51 , 30433068.

    • Search Google Scholar
    • Export Citation
  • Sjöberg, B., and A. Stigebrandt, 1992: Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res., 39 , 269291.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50 , 9871003.

    • Search Google Scholar
    • Export Citation
  • Wahba, G., 1990: Spline Models for Observational Data. SIAM Publications, 169 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 68 4
PDF Downloads 204 51 5