• Andreas, E. L., , J. B. Edson, , E. C. Monahan, , M. P. Rouault, , and S. D. Smith, 1995: The spray contribution to net evaporation from the sea—A review of recent progress. Bound.-Layer Meteor., 72 , 352.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian mean flow. J. Fluid Mech., 89 , 609646.

  • Asher, W. E., , L. M. Karle, , B. J. Higgins, , P. J. Farley, , E. C. Monahan, , and I. S. Leifer, 1996: The influence of bubble plumes on air-seawater gas transfer velocities. J. Geophys. Res., 101 , 1202712041.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., , and O. M. Phillips, 1974: On the incipient breaking of small scale waves. J. Fluid Mech., 65 , 647656.

  • Brumley, B. H., , R. G. Cabrera, , K. L. Deines, , and E. A. Terray, 1991: Performance of a broad-band acoustic Doppler current profiler. IEEE J. Oceanic Eng., 16 , 402407.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1977: The generation of Langmuir circulation by an instability mechanism. J. Fluid Mech., 81 , 209223.

  • Craik, A. D. D., , and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73 , 401426.

  • Crawford, C. B., , and D. M. Farmer, 1987: On the spatial distribution of ocean bubbles. J. Geophys. Res., 92 , 82318243.

  • Edson, J. B., , and C. W. Fairall, 1994: Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res., 99 , 2529525311.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1976: Generation of Langmuir circulations by surface waves—A feedback mechanism. J. Mar. Res., 34 , 117130.

  • Groeneweg, J., , and G. Klopman, 1998: Changes of the mean velocity profiles in the combined wave–current motion described in a GLM formulation. J. Fluid Mech., 370 , 271296.

    • Search Google Scholar
    • Export Citation
  • Hara, T., , and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind–wave spectra. J. Fluid Mech., 470 , 223245.

  • Herbers, T. H. C., , S. Elgar, , and R. T. Guza, 1994: Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I: Forced waves. J. Phys. Oceanogr., 24 , 917927.

    • Search Google Scholar
    • Export Citation
  • Huang, Z. H., , and C. C. Mei, 2003: Effects of surface waves on a turbulent current over a smooth or rough seabed. J. Fluid Mech., 497 , 253287.

    • Search Google Scholar
    • Export Citation
  • Jiang, J-Y., , and R. L. Street, 1991: Modulated flows beneath wind-ruffled, mechanically generated water waves. J. Geophys. Res., 98 , 27112721.

    • Search Google Scholar
    • Export Citation
  • Kemp, P. H., , and R. R. Simons, 1982: The interaction of waves and a turbulent current; waves propagating with the current. J. Fluid Mech., 116 , 227250.

    • Search Google Scholar
    • Export Citation
  • Kemp, P. H., , and R. R. Simons, 1983: The interaction of waves and a turbulent current; waves propagating against the current. J. Fluid Mech., 130 , 7389.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74 , 69916994.

  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87 , 119123.

  • Leibovich, S., 1977: Convective instability of stably stratified water in the ocean. J. Fluid Mech., 82 , 561581.

  • Leibovich, S., 1980: On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99 , 715724.

  • Li, M., , K. Zahariev, , and C. Garrett, 1995: Role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science, 270 , 19551957.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1953: Mass transport in water waves. Philos. Trans. Roy. Soc. London, A245 , 535581.

  • Longuet-Higgins, M. S., 1969a: Action of a variable stress at the surface of water waves. Phys. Fluids, 12 , 737740.

  • Longuet-Higgins, M. S., 1969b: On wave breaking and the equilibrium spectrum of wind generated waves. Proc. Roy. Soc. London, A310 , 151159.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., , and R. W. Stewart, 1960: Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech., 8 , 565583.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., , and R. W. Stewart, 1961: The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech., 10 , 529549.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., , and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with application to “surf-beats.”. J. Fluid Mech., 13 , 481504.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., , and R. W. Stewart, 1964: Radiation stresses in water waves—A physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11 , 529562.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6 , 225237.

  • McWilliams, J. C., , P. P. Sullivan, , and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 130.

  • Nepf, H. M., 1992: The production and mixing effects of Langmuir circulations. Ph.D. thesis, Stanford University.

  • Pattison, M. J., , and S. E. Belcher, 1999: Production rates of sea-spray droplets. J. Geophys. Res., 104 , 1839718407.

  • Phillips, W. R. C., 2002: Langmuir circulations beneath growing or decaying surface waves. J. Fluid Mech., 469 , 317342.

  • Pierson, W. J., , and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69 , 51815190.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., , and J. A. Smith, 1992: Repeat-sequence coding for improved precision of Doppler sonar and sodar. J. Atmos. Oceanic Technol., 9 , 149163.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., , and J. Wright, 1980: Phase speeds of upwind and downwind travelling short gravity waves. J. Geophys. Res., 85 , 33043310.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301 , 355357.

  • Rummler, W. D., 1968: Introduction of a new estimator for velocity spectral parameters. Rep. MM-68-4141-5, AT&T Bell Labs., Whippany, NJ, 24 pp.

  • Skyllingstad, E. D., , and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 , 85018522.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1983: On surface gravity waves crossing weak current jets. J. Fluid. Mech., 134 , 277299.

  • Smith, J. A., 1986: Short surface waves with growth and dissipation. J. Geophys. Res., 91 , 26162632.

  • Smith, J. A., 1990: Modulation of short wind waves by long waves. Surface Waves and Fluxes: Current Theory and Remote Sensing, G. L. Geernaert and W. J. Plant, Eds., Kluwer Academic, 247–284.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97 , 56515664.

  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103 , 1264912668.

  • Smith, J. A., 2002: Continuous time–space sampling of near-surface velocities using sound. J. Atmos. Oceanic Technol., 19 , 18601872.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , and G. T. Bullard, 1995: Directional surface wave estimates from Doppler sonar data. J. Atmos. Oceanic Technol., 12 , 617632.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8 , 441455.

  • Sullivan, P. P., , J. C. McWilliams, , and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507 , 143174.

    • Search Google Scholar
    • Export Citation
  • Swan, C., 1990: Convection within an experimental wave flume. J. Hydraul. Res., 28 , 273282.

  • Swan, C., , I. P. Cummins, , and R. L. James, 2001: An experimental study of two-dimensional surface water waves propagating on depth-varying currents. Part 1. Regular waves. J. Fluid Mech., 428 , 273304.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams, , P. A. Hwang, , and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Theriault, K. B., 1986: Incoherent multibeam Doppler current profiler performance. Part I: Estimate variance. IEEE J. Oceanic Eng., 11 , 715.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1979: Coherence significance levels. J. Atmos. Sci., 36 , 20202021.

  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind waves in deep water, and their role in air-sea gas transfer. Philos. Trans. Roy. Soc. London,, A304 , 155210.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1986: Bubble clouds: A review of their detection by sonar, of related models, and of how. Kυ may be determined. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan and G. M. Niocaill, Eds., D. Reidel, 57–68.

    • Search Google Scholar
    • Export Citation
  • Trevorrow, M. V., , and D. M. Farmer, 1992: The use of Barker codes in Doppler sonar measurements. J. Atmos. Oceanic Technol., 9 , 699704.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1975: Wind-induced drift currents. J. Fluid Mech., 68 , 4970.

  • Zappa, C. J., , W. E. Asher, , A. T. Jessup, , J. Klinke, , and S. R. Long, 2004: Microbreaking and the enhancement of air-water transfer velocity. J. Geophys. Res., 109 .C08S16, doi:10.1029/2003JC001897.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., , A. A. Grachev, , and C. W. Fairall, 2001: Scaling reasoning and field data on the sea surface roughness lengths for scalars. J. Atmos. Sci., 58 , 320325.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 142 142 14
PDF Downloads 91 91 9

Observed Variability of Ocean Wave Stokes Drift, and the Eulerian Response to Passing Groups

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Waves and currents interact via exchanges of mass and momentum. The mass and momentum fluxes associated with surface waves are closely linked to their Stokes drift. Both the variability of the Stokes drift and the corresponding response of the underlying flow are important in a wide range of contexts. Three methods are developed and implemented to evaluate Stokes drift from a recently gathered oceanic dataset, involving surface velocities measured continually over an area 1.5 km in radius by 45°. The estimated Stokes drift varies significantly, in line with the occurrence of compact wave groups, resulting in highly intermittent maxima. One method also provides currents at a fixed level (Eulerian velocities). It is found that Eulerian counterflows occur that completely cancel the Stokes drift variations at the surface. Thus, the estimated Lagrangian surface flow has no discernable mean response to wave group passage. This response is larger than anticipated and is hard to reconcile with current theory.

Corresponding author address: Dr. J. A. Smith, Scripps Institution of Oceanography, UCSD, Mail Stop 0213, 9500 Gilman Dr., La Jolla, CA 92093-0213. Email: jasmith@ucsd.edu

Abstract

Waves and currents interact via exchanges of mass and momentum. The mass and momentum fluxes associated with surface waves are closely linked to their Stokes drift. Both the variability of the Stokes drift and the corresponding response of the underlying flow are important in a wide range of contexts. Three methods are developed and implemented to evaluate Stokes drift from a recently gathered oceanic dataset, involving surface velocities measured continually over an area 1.5 km in radius by 45°. The estimated Stokes drift varies significantly, in line with the occurrence of compact wave groups, resulting in highly intermittent maxima. One method also provides currents at a fixed level (Eulerian velocities). It is found that Eulerian counterflows occur that completely cancel the Stokes drift variations at the surface. Thus, the estimated Lagrangian surface flow has no discernable mean response to wave group passage. This response is larger than anticipated and is hard to reconcile with current theory.

Corresponding author address: Dr. J. A. Smith, Scripps Institution of Oceanography, UCSD, Mail Stop 0213, 9500 Gilman Dr., La Jolla, CA 92093-0213. Email: jasmith@ucsd.edu

Save