• Berge, P., , Y. Pomeau, , and Ch Vidal, 1984: L’ordre dans le Chaos. Hermman, 352 pp.

  • Berloff, P. S., , and J. C. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29 , 19251949.

    • Search Google Scholar
    • Export Citation
  • Böning, C., 1986: On the influence of frictional parameterization in wind-driven ocean circulation models. Dyn. Atmos. Oceans, 10 , 6392.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1963: A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atmos. Sci., 20 , 594606.

  • Cessi, P., , and G. R. Ierley, 1995: Symmetric-breaking multiple equilibria in quasigeostrophic wind-driven flows. J. Phys. Oceanogr., 25 , 11961202.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., , G. Ierley, , and W. R. Young, 1987: A model of the inertial recirculation driven by potential vorticity anomalies. J. Phys. Oceanogr., 17 , 16401652.

    • Search Google Scholar
    • Export Citation
  • Chang, K. I., , K. Ide, , M. Ghil, , and C-C. A. Lai, 2001: Transition to aperiodic variability in a wind-driven double-gyre circulation model. J. Phys. Oceanogr., 31 , 12601286.

    • Search Google Scholar
    • Export Citation
  • Chao, S. Y., 1984: Bimodality of the Kuroshio. J. Phys. Oceanogr., 14 , 92103.

  • Charney, J. G., , and G. R. Flierl, 1981: Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 504–548.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E., , and P. Gent, 1991: The influence of boundary conditions on midlatitude jet separation in ocean numerical models. J. Phys. Oceanogr., 21 , 12901299.

    • Search Google Scholar
    • Export Citation
  • Curry, J., , and A. York, 1977: A transition from Hopf bifurcation to chaos: Computer experiments with maps in R|P%2. The Structure of Attractors in Dynamical Systems, Lecture Notes in Mathematics, Vol. 668, Springer-Verlag, 48–66.

  • Cushman-Roisin, B., , G. G. Sutyrin, , and B. Tang, 1992: Two-layer geostrophic dynamics. Part II: Governing equations. J. Phys. Oceanogr., 22 , 117127.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2000: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Kluwer Academic, 480 pp.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and C. A. Katsman, 1997: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophys. Astrophys. Fluid Dyn., 85 , 195232.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and M. J. Molemaker, 1999: Interfection of the North-Atlantic wind-driven ocean circulation: Continental geometry and asymmetric windstress. J. Mar. Res., 57 , 128.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and M. Ghil, 2004: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43 , RG3002. doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., , Y. Feliks, , and L. Sakuma, 2002: Baroclinic and barotropic aspects of the wind-driven double-gyre circulation. Physica D, 167 , 135.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R., 1988: On the scaling of inertial subgyres. Dyn. Atmos. Oceans, 11 , 265285.

  • Gu, D., , and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., , J. C. McWilliams, , and P. R. Gent, 1992: Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J. Phys. Oceanogr., 22 , 882902.

    • Search Google Scholar
    • Export Citation
  • Hidaka, K., 1949: Mass transport in ocean currents and lateral mixing. J. Mar. Res., 8 , 132136.

  • Hockney, R. W., 1971: The potential calculation and some applications. Methods Comput. Phys., 9 , 135211.

  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8 , 363392.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., , and L. B. Lin, 1975: On the generation of mesoscale eddies and their contribution to the ocean general circulation. I: A preliminary numerical experiment. J. Phys. Oceanogr., 5 , 642657.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., , D. E. Harrison, , and A. J. Semtner Jr., 1983: Eddy resolving numerical models of the large-scale ocean circulation. Eddies in Marine Science, A. R. Robinson, Ed., Topics in Atmospheric and Oceanographic Sciences, Springer-Verlag, 329–403.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1986: Numerical simulation of wind-driven circulation in a subtropical/subpolar basin. J. Phys. Oceanogr., 16 , 16361650.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., 1990: Boundary layers in general ocean circulation. Annu. Rev. Fluid Mech., 22 , 111142.

  • Jiang, S., , F. F. Jin, , and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25 , 764786.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1987: Spectral properties of sea level and time scales of Kuroshio path variations. J. Oceanogr. Soc. Japan, 43 , 111123.

  • Kleeman, R., , J. P. McCreary Jr., , and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Masuda, A., 1982: A interpretation of the bimodal character of the stable Kuroshio path. Deep-Sea Res., 29A , 471484.

  • Matsuura, T., 1995: The evolution of frontal-geostrophic vortices in a two-layer ocean. J. Phys. Oceanogr., 25 , 22982318.

  • Matsuura, T., , and T. Yamagata, 1985: A numerical study of a viscous flow past a circular cylinder on an f-plane. J. Meteor. Soc. Japan, 63 , 151167.

    • Search Google Scholar
    • Export Citation
  • Matsuura, T., , and T. Yamagata, 1986: A numerical study of a viscous flow past a right circular cylinder on a β-plane. Geophys. Astrophys. Fluid Dyn., 37 , 129164.

    • Search Google Scholar
    • Export Citation
  • Meacham, S. P., 2000: Low-frequency variability in the wind-driven circulation. J. Phys. Oceanogr., 30 , 269293.

  • Moore, D. W., 1963: Rossby waves in ocean circulation. Deep-Sea Res. Oceanogr. Abstr., 10 , 735747.

  • Munk, W., 1950: On the wind-driven ocean circulation. J. Meteor., 7 , 7993.

  • Nauw, J. J., , and H. A. Dijkstra, 2001: The origin of low-frequency variability of double-gyre ocean model. J. Mar. Res., 59 , 567597.

  • Nauw, J. J., , H. A. Dijkstra, , and E. P. Chassignet, 2004: Frictionally induced asymmetries in wind-driven flows. J. Phys. Oceanogr., 34 , 20572072.

    • Search Google Scholar
    • Export Citation
  • Nicolis, G., , and I. Prigogine, 1989: Exploring Complexity. An Introduction. Freeman, 328 pp.

  • Nitta, T., , and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67 , 375383.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer, 710 pp.

  • Primeau, F. W., 1998: Multiple equilibria of a double-gyre ocean model with super-slip boundary conditions. J. Phys. Oceanogr., 28 , 21302147.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained inertial oscillations. J. Phys. Oceanogr., 30 , 21242137.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. The Sea. Vol. 6, E. A. Goldberg et al., Eds., John Wiley and Sons, 189–318.

  • Robinson, A. R., , and B. A. Taft, 1972: A numerical experiment for the path of the Kuroshio. J. Mar. Res., 30 , 65101.

  • Ruelle, D., , and F. Takens, 1971: On the nature of turbulence. Commun. Math. Phys., 20 , 167192.

  • Schmeits, M. J., , and H. A. Dijkstra, 2001: Bimodality of the Gulf Stream and Kuroshio. J. Phys. Oceanogr., 31 , 34353456.

  • Schmitz, W. J., , and W. R. Holland, 1982: A preliminary comparison of selected numerical eddy resolving general circulation experiments with observations. J. Mar. Res., 40 , 75117.

    • Search Google Scholar
    • Export Citation
  • Shimokawa, S., , and T. Matsuura, 1999: The asymmetry of recirculation of a double gyre in a two layer ocean. J. Oceanogr., 55 , 449462.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., , and H. A. Dijkstra, 2002: Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr., 32 , 17471762.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., , M. Ghil, , K. Ide, , R. Teman, , and S. Wang, 2003a: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solutions. J. Phys. Oceanogr., 33 , 712728.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., , M. Ghil, , K. Ide, , R. Teman, , and S. Wang, 2003b: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions. J. Phys. Oceanogr., 33 , 729752.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., , M. Ghil, , and H. Dijkstra, 2005: Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. J. Mar. Res., 63 , 931956.

    • Search Google Scholar
    • Export Citation
  • Speich, S., , H. A. Dijkstra, , and M. Ghil, 1995: Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation. Nonlinear Processes Geophys., 2 , 241268.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., , and K. Yoshida, 1972: Kuroshio: Its Physical Aspects. University of Tokyo Press, 517 pp.

  • Traon, P-Y., and Coauthors cited. 1999: Operational oceanography: A GODAE perspective. [Available online at http://www.bom.gov.au/GODAE/.].

  • Turaev, D. V., , and L. P. Shilnikov, 1995: Blue sky catastrophe. Dokl. Math., 51 , 404407.

  • White, W. B., , and J. P. McCreary, 1976: On the formation of the Kurohio meander and its relationship to the large-scale ocean circulation. Deep-Sea Res. Oceanogr. Abstr., 23 , 3347.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: 1. Barotropic representation of Jovian and terrestial turbulence. J. Atmos. Sci., 35 , 13991426.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., , and R. Greatbatch, 1985: Do multiple equilibria exist in a barotropic ocean gyre? Ocean Modelling, 61 , (unpublished manuscripts),. 810.

    • Search Google Scholar
    • Export Citation
  • Yasuda, I., , J. H. Yoon, , and N. Suginohara, 1985: Dynamics of the Kuroshio large meander—Barotropic model. J. Oceanogr. Soc. Japan, 41 , 259273.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 3
PDF Downloads 13 13 0

Two Different Aperiodic Phases of Wind-Driven Ocean Circulation in a Double-Gyre, Two-Layer Shallow-Water Model

View More View Less
  • 1 National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Ibaraki, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A two-layer shallow-water model is used to investigate the transition of wind-driven double-gyre circulation from laminar flow to turbulence as the Reynolds number (Re) is systematically increased. Two distinctly different phases of turbulent double-gyre patterns and energy trajectories are exhibited before and after at Re = 95: deterministic and fully developed turbulent circulations. In the former phase, the inertial subgyres vary between an asymmetric solution and an antisymmetric solution and the double-gyre circulations reach the aperiodic solution mainly due to their barotropic instability. An integrated kinetic energy in the lower layer is slight and the generated mesoscale eddies are confined in the upper layer. The power spectrum of energies integrated over the whole domain at Re = 70 has peaks at the interannual periods (4–7 yr) and the interdecadal period (10–20 yr). The loops of the attractors take on one cycle at those periods and display the blue-sky catastrophe. At Re = 95, the double-gyre circulation reaches a metastable state and the attracters obtained from the three energies form a topological manifold. In the latter, as Re increases, the double-gyre varies from a metastable state to a chaotic state because of the barotropic instability of the eastward jet and the baroclinic instability of recirculation retrograde flow, and the eastward jet meanders significantly with interdecadal variability. The generated eddies cascade to the red side of the power spectrum as expected in the geostrophic turbulence. The main results in the simulation may indicate essential mechanisms for the appearance of multiple states of the Kuroshio and for low-frequency variations in the midlatitude ocean.

Corresponding author address: Dr. Tomonori Matsuura, National Research Institute for Earth Science and Disaster Prevention, 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan. Email: matsuura@bosai.go.jp

Abstract

A two-layer shallow-water model is used to investigate the transition of wind-driven double-gyre circulation from laminar flow to turbulence as the Reynolds number (Re) is systematically increased. Two distinctly different phases of turbulent double-gyre patterns and energy trajectories are exhibited before and after at Re = 95: deterministic and fully developed turbulent circulations. In the former phase, the inertial subgyres vary between an asymmetric solution and an antisymmetric solution and the double-gyre circulations reach the aperiodic solution mainly due to their barotropic instability. An integrated kinetic energy in the lower layer is slight and the generated mesoscale eddies are confined in the upper layer. The power spectrum of energies integrated over the whole domain at Re = 70 has peaks at the interannual periods (4–7 yr) and the interdecadal period (10–20 yr). The loops of the attractors take on one cycle at those periods and display the blue-sky catastrophe. At Re = 95, the double-gyre circulation reaches a metastable state and the attracters obtained from the three energies form a topological manifold. In the latter, as Re increases, the double-gyre varies from a metastable state to a chaotic state because of the barotropic instability of the eastward jet and the baroclinic instability of recirculation retrograde flow, and the eastward jet meanders significantly with interdecadal variability. The generated eddies cascade to the red side of the power spectrum as expected in the geostrophic turbulence. The main results in the simulation may indicate essential mechanisms for the appearance of multiple states of the Kuroshio and for low-frequency variations in the midlatitude ocean.

Corresponding author address: Dr. Tomonori Matsuura, National Research Institute for Earth Science and Disaster Prevention, 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan. Email: matsuura@bosai.go.jp

Save