• Armstrong, A., L. B. Tremblay, and L. A. Mysak, 2003: A data–model intercomparison study of arctic sea-ice variability. Climate Dyn., 20 , 465476.

    • Search Google Scholar
    • Export Citation
  • Bratchie, I., 1984: Rheology of an ice floe field. Ann. Glaciol., 5 , 2328.

  • Comiso, J. C., P. Wadhams, W. B. Krabill, R. N. Swift, J. P. Crawford, and W. B. Tucker III, 1991: Top/bottom multisensor remote sensing of arctic sea ice. J. Geophys. Res., 96 , 26932709.

    • Search Google Scholar
    • Export Citation
  • Coon, M. D., 1972: Mechanical behavior of compacted arctic ice floes. Proc. Offshore Technology Conf., Houston, TX, American Institute of Metalurgical, Mining and Petroleum Engineers, 603–608.

  • Flato, G. M., and W. D. Hibler III, 1995: Ridging and strength in modeling the thickness distribution of arctic sea ice. J. Geophys. Res., 100 , 1861118626.

    • Search Google Scholar
    • Export Citation
  • Fowler, C., 2003: Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors. Tech. Rep., National Snow and Ice Data Center, Boulder, CO, digital media.

  • Gray, J. M. N., 1999: Loss of hyperbolicity and ill-posedness of the viscous–plastic sea ice rheology in uniaxial divergent flow. J. Phys. Oceanogr., 29 , 29202929.

    • Search Google Scholar
    • Export Citation
  • Heil, P., and W. D. Hibler III, 2002: Modeling the high-frequency component of Arctic sea ice drift and deformation. J. Phys. Oceanogr., 32 , 30393057.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9 , 815846.

  • Hibler III, W. D., 1980: Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108 , 19431973.

  • Hibler III, W. D., and E. M. Schulson, 1997: On modeling sea-ice fracture and flow in numerical investigation of climate. Ann. Glaciol., 25 , 2632.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., and E. M. Schulson, 2000: On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res., 105 , 1710517120.

    • Search Google Scholar
    • Export Citation
  • Hilmer, M., and P. Lemke, 2000: On the decrease of Arctic sea ice volume. Geophys. Res. Lett., 27 , 37513754.

  • Holland, D. M., 2001: An impact of subgrid-scale ice–ocean dynamics on sea-ice cover. J. Climate, 14 , 15841601.

  • Hopkins, M. A., 1994: On the ridging of intact lead ice. J. Geophys. Res., 99 , 1635116360.

  • Hopkins, M. A., 1996: On the mesoscale interaction of lead ice and floes. J. Geophys. Res., 101 , 1831518326.

  • Hopkins, M. A., 1998: Four stages of pressure ridging. J. Geophys. Res., 103 , 2188321891.

  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27 , 18491867.

  • Hunke, E. C., and W. H. Lipscomb, 2001: CICE: The Los Alamos sea ice model. Documentation and software user’s manual. Tech. Rep. LA-CC-98-16, Los Alamos National Laboratory, Los Alamos, NM, 56 pp.

  • Kundu, P. K., 1976: Ekman veering observed near the ocean bottom. J. Phys. Oceanogr., 6 , 238242.

  • Laxon, S., N. Peacock, and D. Smith, 2003: High interannual variability of sea ice thickness in the Arctic region. Nature, 425 , 947950.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. K., and J. A. Richter-Menge, 1998: Motion-induced stresses in pack ice. J. Geophys. Res., 103 , 2183121843.

  • Miller, P. A., S. W. Laxon, and D. L. Feltham, 2005: Improving the spatial distribution of modeled Arctic sea ice thickness. Geophys. Res. Lett., 32 .L18503, doi:10.1029/2005GL023622.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., S. W. Laxon, D. L. Feltham, and D. J. Cresswell, 2006: Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J. Climate, 19 , 10891108.

    • Search Google Scholar
    • Export Citation
  • Moritz, R., and J. Ukita, 2000: Geometry and the deformation of pack ice: I. A simple kinematic model. Ann. Glaciol., 31 , 313322.

  • Overland, J. E., and C. H. Pease, 1988: Modeling ice dynamics of coastal seas. J. Geophys. Res., 93 , 1561915637.

  • Pritchard, R. S., 1988: Mathematical characteristics of sea ice dynamics models. J. Geophys. Res., 93 , 1560915618.

  • Richter-Menge, J. A., S. L. McNutt, J. E. Overland, and R. Kwok, 2002: Relating Arctic pack ice stress and deformation under winter conditions. J. Geophys. Res., 107 .8040, doi:10.1029/2000JC000477.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., 1975: The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res., 80 , 45144519.

  • Rothrock, D. A., J. Zhang, and Y. Yu, 2003: The Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108 .3083, doi:10.1029/2001JC001208.

    • Search Google Scholar
    • Export Citation
  • Schulson, E. M., and O. Y. Nickolayev, 1995: Failure of columnar saline ice under biaxial compression: Failure envelopes and the brittle-to-ductile transition. J. Geophys. Res., 100 , 2238322400.

    • Search Google Scholar
    • Export Citation
  • Shen, H. H., W. D. Hibler III, and M. Leppranta, 1987: The role of floe collision in sea ice rheology. J. Geophys. Res., 92 , 70857096.

    • Search Google Scholar
    • Export Citation
  • Sisodiya, R. G., and K. D. Vaudery, 1981: Beaufort Sea first-year ice features survey—1979. Proc. Sixth Int. Conf. on Port and Ocean Engineering under Arctic Conditions, Quebec City, QC, Canada, Université Laval, 755–764.

  • Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80 , 45014513.

    • Search Google Scholar
    • Export Citation
  • Tremblay, B. L., and L. A. Mysak, 1997: Modeling sea ice cover as a granular material including the dilatancy effect. J. Phys. Oceanogr., 27 , 23422360.

    • Search Google Scholar
    • Export Citation
  • Ukita, J., and R. E. Moritz, 1995: Yield curves and flow rules of pack ice. J. Geophys. Res., 100 , 45454557.

  • Ukita, J., and R. E. Moritz, 2000: Geometry and the deformation of pack ice: II. Simulation with a random isotropic model and implementation in sea-ice rheology. Ann. Glaciol., 31 , 323326.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 1987: Sea ice thickness distribution in the Greenland Sea and Eurasian basin, May 1987. J. Geophys. Res., 97 , 53315348.

  • Wilchinsky, A. V., and D. L. Feltham, 2004: Dependence of sea ice yield-curve shape on ice thickness. J. Phys. Oceanogr., 34 , 28522856.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., D. Rothrock, and M. Steele, 1998: Warming of the Arctic Ocean by a strengthened Atlantic inflow: Model results. Geophys. Res. Lett., 25 , 17451748.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 35 0
PDF Downloads 40 24 1

A Multithickness Sea Ice Model Accounting for Sliding Friction

View More View Less
  • 1 Centre for Polar Observation and Modelling, Department of Earth Sciences, University College London, London, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea ice model code and is shown to improve agreement between model predictions and observed spatial distribution of sea ice thickness in the Arctic.

* Additional affiliation: Institute of Mathematics and Mechanics, Kazan State University, Kazan, Republic of Tatarstan, Russia

+ Additional affiliation: British Antarctic Survey, Cambridge, United Kingdom

# Additional affiliation: Department of Physical Geography and Ecosystems Analysis, Ecosystem Modelling and Biodiversity Studies (EMBERS) Group, Lund University, Lund, Sweden

Corresponding author address: Alexander V. Wilchinsky, Centre for Polar Observation and Modelling, Dept. of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom. Email: aw@cpom.ucl.ac.uk

Abstract

A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea ice model code and is shown to improve agreement between model predictions and observed spatial distribution of sea ice thickness in the Arctic.

* Additional affiliation: Institute of Mathematics and Mechanics, Kazan State University, Kazan, Republic of Tatarstan, Russia

+ Additional affiliation: British Antarctic Survey, Cambridge, United Kingdom

# Additional affiliation: Department of Physical Geography and Ecosystems Analysis, Ecosystem Modelling and Biodiversity Studies (EMBERS) Group, Lund University, Lund, Sweden

Corresponding author address: Alexander V. Wilchinsky, Centre for Polar Observation and Modelling, Dept. of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom. Email: aw@cpom.ucl.ac.uk

Save