• Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulation. Nature, 323 , 301304.

  • Chen, F., and M. Ghil, 1995: Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr., 25 , 25472568.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and M. Ghil, 1996: Interdecadal variability in a hybrid coupled ocean–atmosphere model. J. Phys. Oceanogr., 26 , 15611578.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1986: On the mean flow instabilities within the planetary geostrophic equations. J. Phys. Oceanogr., 16 , 19811984.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46 , 215265.

  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29 , 893910.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and M. L. Blanc, 2001: Thermal resonance of the atmosphere to SST anomalies. Implications for the Antarctic circumpolar wave. Tellus, 53A , 403424.

    • Search Google Scholar
    • Export Citation
  • Da Costa, E., and A. Colin de Verdière, 2002: The 7.7y North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 128 , 797817.

  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability excited by atmospheric surface flux forcing. J. Climate, 13 , 14811495.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the northern hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and S. Zhang, 1995: An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Climate, 8 , 8191.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Hansen, D. V., and H. F. Bezdek, 1996: On the nature of decadal anomalies in North Atlantic sea surface temperature. J. Geophys. Res., 101 , 87498758.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and R. L. Chou, 1994: Parameter sensitivity study of the haline circulation. Climate Dyn., 9 , 391409.

  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of the three dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A , 526545.

    • Search Google Scholar
    • Export Citation
  • Huck, T., A. Colin de Verdière, and A. Weaver, 1999a: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29 , 865892.

    • Search Google Scholar
    • Export Citation
  • Huck, T., A. J. Weaver, and A. Colin de Verdière, 1999b: On the influence of the parameterization of lateral boundary layers on the thermohaline circulation in coarse resolution ocean-models. J. Mar. Res., 57 , 387426.

    • Search Google Scholar
    • Export Citation
  • Huck, T., G. Vallis, and A. Colin de Verdière, 2001: On the robustness of the interdecadal modes of the thermohaline circulation. J. Climate, 14 , 940963.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., and M. Ghil, 2004: Interdecadal variability in a hybrid coupled ocean–atmosphere–sea ice model. J. Phys. Oceanogr., 34 , 17461769.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and R. J. Haarsma, 1994: Variability and multiple equilibria of the thermohaline circulation associated with deep-water formation. J. Phys. Oceanogr., 24 , 14801493.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1989: Interpendatal variability of temperature and salinity of intermediate depths of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res., 94 , 96799685.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Mikolajewicz, U., and E. Maier-Reimer, 1990: Internal secular variability in an ocean general circulation model. Climate Dyn., 4 , 145156.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13 , 707730.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Pierce, D. W., T. P. Barnett, and U. Mikolajewicz, 1995: Competing roles of heat and freshwater flux in forcing the thermohaline circulation. J. Phys. Oceanogr., 25 , 20462064.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., D. Cayan, and Y. Kushnir, 1997: Decadal variability of hydrography in the upper northern north Atlantic in 1948–1990. J. Geophys. Res., 102 , 85058531.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1986: A simplified linear ocean circulation theory. J. Mar. Res., 44 , 695711.

  • Stern, M. E., 1967: Lateral mixing of water masses. Deep-Sea Res., 14 , 747753.

  • Sutton, R. T., and M. R. Allen, 1997: Decadal predictability of north Atlantic sea surface temperature and climate. Nature, 388 , 563567.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline circulation on interdecadal timescales. J. Phys. Oceanogr., 32 , 138160.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1993: Is the magnitude of the deep-outflow from the Atlantic ocean actually governed by southern hemisphere winds? The Global Carbon Cycle, M. Heimann, Ed., NATO ASI Series, Vol. I, Springer, 303–331.

  • Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan, 1994: Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24 , 217232.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30 , 933954.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1991a: Evidence for decadal variability in an ocean general circulation model: An advective mechanism. Atmos.–Ocean, 29 , 197231.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1991b: The role of mixed boundary conditions in numerical models of the ocean’s climate. J. Phys. Oceanogr., 21 , 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., E. S. Sarachik, and J. Marotzke, 1991: Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353 , 836838.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23 , 3960.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1982: A simple heat-salt oscillator. Dyn. Atmos. Ocean, 6 , 233242.

  • Winton, M., and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23 , 289304.

    • Search Google Scholar
    • Export Citation
  • Wright, D. G., and T. F. Stocker, 1991: A zonally averaged model for the thermohaline circulation. Part I: Model development and flow dynamics. J. Phys. Oceanogr., 21 , 17131724.

    • Search Google Scholar
    • Export Citation
  • Yin, F. L., and E. S. Sarachik, 1995: Interdecadal thermohaline oscillations in a sector ocean general circulation model: Advective and convective processes. J. Phys. Oceanogr., 25 , 24652484.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 67 1
PDF Downloads 13 10 0

The Different Nature of the Interdecadal Variability of the Thermohaline Circulation under Mixed and Flux Boundary Conditions

View More View Less
  • 1 Laboratoire de Physique des Océans (UMR 6523 CNRS IFREMER UBO), Brest, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The differences between the interdecadal variability under mixed and constant flux boundary conditions are investigated using a coarse-resolution ocean model in an idealized flat-bottom single-hemisphere basin. Objective features are determined that allow one type of oscillation to be distinguished versus the other. First, by performing a linear stability analysis of the steady state obtained under restoring boundary conditions, it is shown that the interdecadal variability under constant flux and mixed boundary conditions arises, respectively, from the instability of a linear mode around the mean stratification and circulation and from departure from the initial state. Based on the budgets of density variance, it is shown next that the two types of oscillations have different energy sources: Under the constant-flux boundary condition (the thermal mode), the downgradient meridional eddy heat flux in the western boundary current regions sustains interdecadal variability, whereas under mixed boundary conditions (the salinity mode), a positive feedback between convective adjustment and restoring surface heat flux is at the heart of the existence of the decadal oscillation. Furthermore, the positive correlations between temperature and salinity anomalies in the forcing layer are shown to dominate the forcing of density variance. In addition, the vertical structure of perturbations reveals vertical phase lags at different depths in all tracer fields under constant flux, while under mixed boundary conditions only the temperature anomalies show a strong dipolar structure. The authors propose that these differences will allow one to identify which type of oscillation, if any, is at play in the more exhaustive climate models.

Corresponding author address: Olivier Arzel, Institut d’Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain, Chemin du cyclotron, 2, 1348 Louvain-la-Neuve, Belgium. Email: arzel@astr.ucl.ac.be

Abstract

The differences between the interdecadal variability under mixed and constant flux boundary conditions are investigated using a coarse-resolution ocean model in an idealized flat-bottom single-hemisphere basin. Objective features are determined that allow one type of oscillation to be distinguished versus the other. First, by performing a linear stability analysis of the steady state obtained under restoring boundary conditions, it is shown that the interdecadal variability under constant flux and mixed boundary conditions arises, respectively, from the instability of a linear mode around the mean stratification and circulation and from departure from the initial state. Based on the budgets of density variance, it is shown next that the two types of oscillations have different energy sources: Under the constant-flux boundary condition (the thermal mode), the downgradient meridional eddy heat flux in the western boundary current regions sustains interdecadal variability, whereas under mixed boundary conditions (the salinity mode), a positive feedback between convective adjustment and restoring surface heat flux is at the heart of the existence of the decadal oscillation. Furthermore, the positive correlations between temperature and salinity anomalies in the forcing layer are shown to dominate the forcing of density variance. In addition, the vertical structure of perturbations reveals vertical phase lags at different depths in all tracer fields under constant flux, while under mixed boundary conditions only the temperature anomalies show a strong dipolar structure. The authors propose that these differences will allow one to identify which type of oscillation, if any, is at play in the more exhaustive climate models.

Corresponding author address: Olivier Arzel, Institut d’Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain, Chemin du cyclotron, 2, 1348 Louvain-la-Neuve, Belgium. Email: arzel@astr.ucl.ac.be

Save