• Beismann, J-O., , and R. Redler, 2003: Model simulations of CFC uptake in North Atlantic Deep Water: Effects of parameterizations and grid resolution. J. Geophys. Res., 108 .3159, doi:10.1029/2001JC001253.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., Academic Press, 455–474.

    • Search Google Scholar
    • Export Citation
  • Daly, K. L., and Coauthors, 2001: Hydrography, nutrients, and carbon pools in the Pacific sector of the Southern Ocean: Implications for carbon flux. J. Geophys. Res., 106 , 71077124.

    • Search Google Scholar
    • Export Citation
  • Doney, S., , and J. Bullister, 1992: A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res., 39 , 18571883.

  • Döös, K., , and D. J. Webb, 1994: The Deacon cell and other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

  • Dutay, J-C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell., 4 , 89120.

    • Search Google Scholar
    • Export Citation
  • England, M., , and E. Maier-Reimer, 2001: Using chemical tracers to assess ocean models. Rev. Geophys., 39 , 2970.

  • Haine, T. W. N., , K. J. Richards, , and Y. Jia, 2003: Chlorofluorocarbon constraints on North Atlantic ventilation. J. Phys. Oceanogr., 33 , 17981814.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., , P. de Vries, , and G. J. van Oldenborgh, 2001: Do tropical cells ventilate the Indo-Pacific equatorial thermocline? Geophys. Res. Lett., 28 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Hellerman, S., , and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , and B. Qiu, 1998: The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr., 28 , 11731186.

    • Search Google Scholar
    • Export Citation
  • Ishida, A., , Y. Kashino, , H. Mitsudera, , N. Yoshioka, , and T. Kadokura, 1998: Preliminary results of a global high-resolution GCM experiment. J. Fac. Sci. Hokkaido Univ. Ser. 7, 11 , 441460.

    • Search Google Scholar
    • Export Citation
  • Ishida, A., , K. Nakata, , S. Aoki, , H. Kutsukake, , M. Kishi, , and M. Kubota, 2001: Sensitivity of CFCs and anthropogenic CO2 uptake in a North Pacific GCM to mixing parameterization and surface forcing. J. Oceanogr., 57 , 433450.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., , and M. Tomczak, 1997: Ventilation processes and water mass ages in thermocline of the southeast Indian Ocean. Geophys. Res. Lett., 24 , 27772780.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., , and D. Quadfasel, 2002: Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res. II, 49 , 14411457.

  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18 .GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Levitus, S., 1994: World ocean atlas 1994: CD-ROM data set documentation. National Oceanographic Data Center Informal Rep. 13, 30 pp.

  • Matear, R. J., , and B. I. McNeil, 2003: Decadal accumulation of anthropogenic CO2 in the Southern Ocean: A comparison of CFC-age derived estimates to multiple-linear regression estimates. Global Biogeochem. Cycles, 17 .1113, doi:10.1029/2003GB002089.

    • Search Google Scholar
    • Export Citation
  • McNeil, B. I., , R. J. Matear, , R. M. Keys, , J. L. Bullister, , and J. L. Sarmiento, 2003: Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science, 299 , 235239.

    • Search Google Scholar
    • Export Citation
  • Mecking, S., , and M. J. Warner, 2001: On the subsurface CFC maxima in the subtropical North Pacific thermocline and their relation to mode waters and oxygen maxima. J. Geophys. Res., 106 , 2217922198.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. Whitworth III, , and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM 2 documentation: User’s guide and reference manual. NOAA/Geophysical Fluid Dynamics Laboratory Ocean Tech. Rep. 3, 246 pp.

  • Pacanowski, R. C., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Qu, T., , S-P. Xie, , H. Mitsudera, , and A. Ishida, 2002: Subduction of the North Pacific mode waters in a global high-resolution GCM. J. Phys. Oceanogr., 32 , 746763.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and B. Cornuelle, 1992: The subtropical mode waters of the South Pacific Ocean. J. Phys. Oceanogr., 22 , 11781187.

  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305 , 367371.

  • Sasai, Y., , A. Ishida, , Y. Yamanaka, , and H. Sasaki, 2004: Chlorofluorocarbons in a global ocean eddy-resolving OGCM: Pathway and formation of Antarctic Bottom Water. Geophys. Res. Lett., 31 .L12305, doi:10.1029/2004GL019895.

    • Search Google Scholar
    • Export Citation
  • Schlosser, P., , J. L. Bullister, , R. Fine, , W. J. Jenkins, , R. Key, , J. Lupton, , W. Reother, , and J. W. M. Smethie, 2001: Transformation and age of water masses. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., Academic Press, 431–452.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., , and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , and M. H. England, 2004: Evaluation of interior circulation in a high-resolution global ocean model. Part I: Deep and bottom waters. J. Phys. Oceanogr., 34 , 25922614.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., , and L. D. Talley, 1998: A Pacific hydrographic section at 88°W: Water-property distribution. J. Geophys. Res., 103 , 1289912918.

    • Search Google Scholar
    • Export Citation
  • Walker, S. J., , R. F. Weiss, , and P. K. Salameh, 2000: Reconstructed histories of the annual mean atmospheric mole fractions for halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride. J. Geophys. Res., 105 , 1428514296.

    • Search Google Scholar
    • Export Citation
  • Wallace, D. W. R., 2001: Storage and transport of excess CO2 in the oceans: The JGOFS/WOCE global CO2 survey. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., Academic Press, 489–521.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 , 73737382.

  • Warner, M. J., , and R. F. Weiss, 1985: Solubility of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res., 32A , 14851497.

    • Search Google Scholar
    • Export Citation
  • Warner, M. J., , and R. F. Weiss, 1992: Chlorofluoromethanes in South Atlantic Antarctic Intermediate Water. Deep-Sea Res., 39 , 20532075.

    • Search Google Scholar
    • Export Citation
  • Warner, M. J., , J. L. Bullister, , D. P. Wisegarver, , R. H. Gammon, , and R. F. Weiss, 1996: Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989. J. Geophys. Res., 101 , 2052520542.

    • Search Google Scholar
    • Export Citation
  • Watanabe, Y. W., , K. Harada, , and K. Ishikawa, 1994: Chlorofluorocarbons in the central North Pacific and southward spreading time of North Pacific intermediate water. J. Geophys. Res., 99 , 2519525213.

    • Search Google Scholar
    • Export Citation
  • Watanabe, Y. W., , A. Ishida, , M. Tamaki, , and M. Fukasawa, 1997: Water column inventories of chlorofluorocarbons and production rate of intermediate water in the North Pacific. Deep-Sea Res., 44 , 10911104.

    • Search Google Scholar
    • Export Citation
  • Willey, D. A., , R. A. Fine, , R. E. Sonnerup, , J. L. Bullister, , W. M. Smethie Jr., , and M. J. Warner, 2004: Global oceanic chlorofluorocarbon inventory. Geophys. Res. Lett., 31 .L01303, doi:10.1029/2003GL018816.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., , and G. C. Johnson, 2003: South Pacific eastern subtropical mode water. J. Phys. Oceanogr., 33 , 14931509.

  • Xie, S-P., , T. Kunitani, , A. Kubokawa, , M. Nonaka, , and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Yamanaka, G., , Y. Kitamura, , and M. Endo, 1998: Formation of North Pacific Intermediate Water in Meteorological Research Institute ocean general circulation model. 1. Subgrid-scale mixing and marginal sea fresh water. J. Geophys. Res., 103 , 3088530903.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 3
PDF Downloads 16 16 3

Role of Eddies in Chlorofluorocarbon Transport in Wind-Driven Oceanic Layers

View More View Less
  • 1 Frontier Research Center for Global Change, JAMSTEC, Yokohoma, and Institute of Observational Research for Global Change, JAMSTEC, Yokosuka, Japan
  • | 2 Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan
  • | 3 Frontier Research Center for Global Change, JAMSTEC, Yokohama, and Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study the global distribution and transport of chlorofluorocarbons (CFCs) in the oceans are investigated using a high-resolution numerical model. The authors focus on the effects of wind-driven processes such as subduction and ventilation on the distribution of CFC-11 within surface and thermocline layers. Local maxima of tracer inventory are identified in oceanic regions. Two major absorption regions in the South Pacific Ocean are located west of South America and northeast of New Zealand in boundary latitudes between subtropical and subantarctic areas. In the North Pacific and south Indian Oceans, the positions of the local maxima of tracers migrate west–east with increasing density. The relationship between water formation and tracer distribution is discussed by comparing the wintertime mixed layer depth and mean circulation. The contributions of mean and eddy transport of the meridional overturning cells to tracer transport are analyzed. Stationary eddies have a large impact in the Southern Ocean, while transient eddies are crucial for the compensation of mean transport in the equatorial oceans. Mean and seasonal variability components of meridional tracer transport are dominant in the subtropics; however, eddy transport also plays a significant role.

Corresponding author address: A. Ishida, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan. Email: ishidaa@jamstec.go.jp

Abstract

In this study the global distribution and transport of chlorofluorocarbons (CFCs) in the oceans are investigated using a high-resolution numerical model. The authors focus on the effects of wind-driven processes such as subduction and ventilation on the distribution of CFC-11 within surface and thermocline layers. Local maxima of tracer inventory are identified in oceanic regions. Two major absorption regions in the South Pacific Ocean are located west of South America and northeast of New Zealand in boundary latitudes between subtropical and subantarctic areas. In the North Pacific and south Indian Oceans, the positions of the local maxima of tracers migrate west–east with increasing density. The relationship between water formation and tracer distribution is discussed by comparing the wintertime mixed layer depth and mean circulation. The contributions of mean and eddy transport of the meridional overturning cells to tracer transport are analyzed. Stationary eddies have a large impact in the Southern Ocean, while transient eddies are crucial for the compensation of mean transport in the equatorial oceans. Mean and seasonal variability components of meridional tracer transport are dominant in the subtropics; however, eddy transport also plays a significant role.

Corresponding author address: A. Ishida, Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan. Email: ishidaa@jamstec.go.jp

Save