• Bryan, F., 1987: Parameter sensivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17 , 970985.

  • Chen, F., , and M. Ghil, 1995: Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr., 25 , 25472568.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., , R. Bleck, , and C. Rooth, 2004: Multidecadal thermohaline variability in an ocean-atmosphere general circulation model. Climate Dyn., 22 , 573590.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., , and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29 , 893910.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , S. Manabe, , and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H., , and A. von der Heydt, 2007: Localization of multidecadal variability. Part II: Spectral origin of multidecadal modes. J. Phys. Oceanogr., 37 , 24152428.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H., , L. Te Raa, , M. Schmeits, , and J. Gerrits, 2006: On the physics of the Atlantic Multidecadal Oscillation. Ocean Dyn., 56 , 3650.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18 , 11171135.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., , and S. Zhang, 1995: An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Climate, 8 , 8291.

    • Search Google Scholar
    • Export Citation
  • Huck, T., , and G. Vallis, 2001: Linear stability analysis of the three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A , 526545.

    • Search Google Scholar
    • Export Citation
  • Huck, T., , A. Colin de Verdiére, , and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29 , 865892.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., , and M. Ghil, 2004: Interdecadal variability in a hybrid coupled ocean–atmosphere–sea ice model. J. Phys. Oceanogr., 34 , 17561775.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., , and P. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21 , 13721385.

  • Pacanowski, R. C., , and S. M. Griffies, 1999: The MOM3 manual. NOAA/GFDL Ocean Group Tech. Rep. 4, 680 pp.

  • Te Raa, L. A., , and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal time scales. J. Phys. Oceanogr., 32 , 138160.

    • Search Google Scholar
    • Export Citation
  • Te Raa, L. A., , J. Gerrits, , and H. A. Dijkstra, 2004: Identification of the mechanism of interdecadal variability in the North Atlantic Ocean. J. Phys. Oceanogr., 34 , 27922807.

    • Search Google Scholar
    • Export Citation
  • Thual, O., , and J. C. McWilliams, 1992: The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64 , 6795.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42 , 477500.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 3
PDF Downloads 7 7 0

Localization of Multidecadal Variability. Part I: Cross-Equatorial Transport and Interbasin Exchange

View More View Less
  • 1 Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Multidecadal SST variability is studied in idealized one- and two-ocean-basin configurations, using simulations with the Modular Ocean Model. The authors demonstrate that the multidecadal variability on the global “conveyor type” circulation is localized in the North Atlantic Ocean. Interbasin exchange processes determine the locations where regions of deep-water formation occur and induce a localization of SST multidecadal anomalies in the Atlantic. The physics of this localization is subsequently investigated by considering more equatorially symmetric background flows in two-basin and one-basin configurations. A cross-equatorial flow in the Atlantic induces the localization of the multidecadal variability in the North Atlantic. By using the mechanism of multidecadal variability as proposed in 2002 by Te Raa and Dijkstra in a single-hemispheric configuration, the physics of these localization processes can be explained.

Corresponding author address: Anna von der Heydt, Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, 3584CC Utrecht, Netherlands. Email: a.s.vonderheydt@phys.uu.nl

Abstract

Multidecadal SST variability is studied in idealized one- and two-ocean-basin configurations, using simulations with the Modular Ocean Model. The authors demonstrate that the multidecadal variability on the global “conveyor type” circulation is localized in the North Atlantic Ocean. Interbasin exchange processes determine the locations where regions of deep-water formation occur and induce a localization of SST multidecadal anomalies in the Atlantic. The physics of this localization is subsequently investigated by considering more equatorially symmetric background flows in two-basin and one-basin configurations. A cross-equatorial flow in the Atlantic induces the localization of the multidecadal variability in the North Atlantic. By using the mechanism of multidecadal variability as proposed in 2002 by Te Raa and Dijkstra in a single-hemispheric configuration, the physics of these localization processes can be explained.

Corresponding author address: Anna von der Heydt, Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, 3584CC Utrecht, Netherlands. Email: a.s.vonderheydt@phys.uu.nl

Save