The Atlantic Subtropical Front/Current Systems of Azores and St. Helena

Manuela F. Juliano Laboratory of Marine Environment and Technology, University of the Azores, Praia da Vitória, Azores, Portugal

Search for other papers by Manuela F. Juliano in
Current site
Google Scholar
PubMed
Close
and
Mário L. G. R. Alves Laboratory of Marine Environment and Technology, University of the Azores, Praia da Vitória, Azores, Portugal

Search for other papers by Mário L. G. R. Alves in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large-scale climatic ocean circulation model was used to study the Atlantic Ocean circulation. This inverse model is an extension of the β-spiral formulation presented in papers by Stommel and Schott with a more complete version of the vorticity equation, including relative vorticity in addition to planetary vorticity. Also, a more complete database for hydrological measurements in the Atlantic Ocean was used, including not only the National Oceanographic Data Center database but also World Ocean Circulation Experiment data and cruises near the Azores, Angola, and Guinea-Bissau. A detailed analysis of the Northern Hemisphere Azores Current and Front shows that this new database and the model results were able to capture all major features reported previously. In the Southern Hemisphere, the authors have identified fully and described the subtropical front that is the counterpart to the Azores Current, which they call the St. Helena Current and Front. Both current systems of both hemispheres have similar intensities, depth penetration, volume transports, and zonal flow. Both have associated subsurface adjacent countercurrent flows, and their main cores flow at similar latitudes (∼34°N for the Azores Current and 34°S for the St. Helena Current). It is argued that both current systems and associated fronts are the poleward 18°C Mode Water discontinuities of the two Atlantic subtropical gyres and that both originate at the corresponding hemisphere western boundary current systems from which they penetrate into the open ocean interior. Thus, both currents should have a similar forcing source, and their origin should not be linked to any geographical peculiarities.

Corresponding author address: Manuela F. Juliano, LAMTec-Laboratory of Marine Environment and Technology, University of the Azores, Apartado 64, Edifícios da Marina, 9760-412 Praia da Vitória, Azores, Portugal. Email: manela@mail.angra.uac.pt

Abstract

A large-scale climatic ocean circulation model was used to study the Atlantic Ocean circulation. This inverse model is an extension of the β-spiral formulation presented in papers by Stommel and Schott with a more complete version of the vorticity equation, including relative vorticity in addition to planetary vorticity. Also, a more complete database for hydrological measurements in the Atlantic Ocean was used, including not only the National Oceanographic Data Center database but also World Ocean Circulation Experiment data and cruises near the Azores, Angola, and Guinea-Bissau. A detailed analysis of the Northern Hemisphere Azores Current and Front shows that this new database and the model results were able to capture all major features reported previously. In the Southern Hemisphere, the authors have identified fully and described the subtropical front that is the counterpart to the Azores Current, which they call the St. Helena Current and Front. Both current systems of both hemispheres have similar intensities, depth penetration, volume transports, and zonal flow. Both have associated subsurface adjacent countercurrent flows, and their main cores flow at similar latitudes (∼34°N for the Azores Current and 34°S for the St. Helena Current). It is argued that both current systems and associated fronts are the poleward 18°C Mode Water discontinuities of the two Atlantic subtropical gyres and that both originate at the corresponding hemisphere western boundary current systems from which they penetrate into the open ocean interior. Thus, both currents should have a similar forcing source, and their origin should not be linked to any geographical peculiarities.

Corresponding author address: Manuela F. Juliano, LAMTec-Laboratory of Marine Environment and Technology, University of the Azores, Apartado 64, Edifícios da Marina, 9760-412 Praia da Vitória, Azores, Portugal. Email: manela@mail.angra.uac.pt

Save
  • Alves, M., 1996: Instability dynamics of a subtropical jet: The Azores Front–Current system case (FCA). Ph.D. dissertation, University of Bretagne Occidentale, 229 pp.

  • Alves, M., and A. Colin de Verdière, 1999: Instability dynamics of a subtropical jet and applications to the Azores Front Current system: Eddy-driven mean flow. J. Phys. Oceanogr., 29 , 837864.

    • Search Google Scholar
    • Export Citation
  • Alves, M., A. Simões, A. Colin de Verdière, and M. F. Juliano, 1994: Optimal Hydrological Atlas for the Northeast Atlantic (0°–50°W, 20°–50°N) (in French). University of the Azores, 76 pp.

  • Beckmann, A., C. W. Böning, B. Brügge, and D. Stammer, 1994a: On the generation and role of eddy variability in the central North Atlantic Ocean. J. Geophys. Res., 99 , 2038120391.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., C. W. Böning, C. Köberle, and J. Willebrand, 1994b: Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean. J. Phys. Oceanogr., 24 , 326344.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 1994: Frontal structure of the South Atlantic (abstract). The South Atlantic: Present and Past Circulation Symposium, University of Bremen 52, 19–20.

  • Belkin, I. M., and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101 , 36753696.

    • Search Google Scholar
    • Export Citation
  • Bigg, G. R., 1990: Inversions of observations near the Azores Front. J. Mar. Res., 48 , 661675.

  • Boebel, O., C. Schmid, G. Podestá, and W. Zenk, 1999: Intermediate water in the Brasil–Malvinas Confluence Zone: A Lagrangian view. J. Geophys. Res., 104 , 2106321082.

    • Search Google Scholar
    • Export Citation
  • Bogden, P. S. R., E. Davis, and R. Salmon, 1993: The North Atlantic circulation: Combining simplified dynamics with hydrographic data. J. Mar. Res., 51 , 152.

    • Search Google Scholar
    • Export Citation
  • Confluence Principal Investigators, 1990: Confluence 1988–1990: An intensive study of the southwestern Atlantic. Eos, Trans. Amer. Geophys. Union, 71 , 11311134.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., and Coauthors, cited. 1999: World Ocean Database 1998 CD-ROM data set documentation. NODC Internal Rep. 14, Silver Spring, MD, 114 pp.

  • Cromwell, D., P. G. Challenor, A. L. New, and R. D. Pingree, 1996: Persistent westward flow in the Azores Current as seen from altimetry and hydrology. J. Geophys. Res., 101 , 1192311933.

    • Search Google Scholar
    • Export Citation
  • Da Silveira, I. C. A., G. R. Flierl, and W. S. Brown, 1999: Dynamics of separating western boundary currents. J. Phys. Oceanogr., 29 , 119144.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., D. C. Webb, L. A. Regier, and J. Dufour, 1996: Comparison of Autonomous Lagrangian Circulation Explorer and Fine-Resolution Antarctic Model results in the South Atlantic. J. Geophys. Res., 101 , 855884.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., 1993: Geostrophic velocity and transport variability in the Brazil–Malvinas Confluence. Deep-Sea Res., 40 , 13791394.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., and C. Giulivi, 1994: What forces the variability of the southwestern Atlantic boundary currents? Deep-Sea Res. I, 41 , 15271550.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and C. L. Greengrove, 1986: Geostrophic circulation of the Brazil–Falkland Confluence. Deep-Sea Res., 33A , 573585.

  • Gordon, A. L., R. F. Weiss, W. M. Smethie Jr., and M. J. Warner, 1992: Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J. Geophys. Res., 97 , C5. 72237240.

    • Search Google Scholar
    • Export Citation
  • Gould, W. J., 1985: Physical oceanography of the Azores Front. Prog. Oceanogr., 14 , 167190.

  • Harvey, J., and M. Arhan, 1988: The water masses of the central North Atlantic in 1983–84. J. Phys. Oceanogr., 18 , 18551875.

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., P. E. Harrison, and A. J. Semtner, 1982: Eddy resolving numerical models of large-scale ocean circulation. Eddies in Marine Science, A. R. Robinson, Ed., Springer-Verlag, 379–403.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., 2000: Formation of an Azores Current due to Mediterranean overflow in a modeling study of the North Atlantic. J. Phys. Oceanogr., 30 , 23422358.

    • Search Google Scholar
    • Export Citation
  • Juliano, M. F., 2003: Determination and analysis of the three-dimensional Atlantic Ocean circulation and climate: An integrated vision (in Portuguese). Ph.D. dissertation, University of the Azores, 311 pp.

  • Kahru, M., S. Nômmann, and B. Zeitzschel, 1991: Particle (plankton): Size structure across the Azores Front (Joint Global Ocean Flux Study North Atlantic Bloom Experiment). J. Geophys. Res., 96 , 70837088.

    • Search Google Scholar
    • Export Citation
  • Käse, R. H., and W. Krauss, 1996: The Gulf Stream, the North Atlantic Current, and the origin of the Azores Current. The Warmwatersphere of the North Atlantic Ocean, W. Krauss, Ed., Gebrüder Borntraeger, 291–337.

    • Search Google Scholar
    • Export Citation
  • Kielmann, J., and R. H. Käse, 1987: Numerical modelling of meander and eddy formation in the Azores Current frontal zone. J. Phys. Oceanogr., 17 , 529541.

    • Search Google Scholar
    • Export Citation
  • Klein, B., and G. Siedler, 1989: On the origin of the Azores Current. J. Geophys. Res., 94 , 61596168.

  • Krauss, W., 1986: The North Atlantic Current. J. Geophys. Res., 91 , 50615074.

  • Le Traon, P. Y., and P. De Mey, 1994: The eddy field associated with the Azores Front east of the Mid-Atlantic Ridge as observed by the Geosat altimeter. J. Geophys. Res., 99 , 99079923.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., and R. Morrow, 2001: Ocean currents and eddies. Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave, Eds., International Geophysics Series, Vol. 69, Academic Press, 171–215.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. National Oceanic and Atmospheric Administration, 173 pp.

  • Lozier, M. S., 1997: Evidence for large-scale eddy-driven gyres in the North Atlantic. Science, 277 , 361364.

  • Maamaatuaiahutapu, K., V. Garcon, C. Provost, M. Boulahdid, and A. P. Osiroff, 1992: Brazil–Malvinas confluence: Water mass composition. J. Geophys. Res., 97 , 94939509.

    • Search Google Scholar
    • Export Citation
  • Maillard, C., and R. H. Käse, 1989: The near surface flow in the subtropical gyre south of the Azores. J. Geophys. Res., 94 , 1613316140.

    • Search Google Scholar
    • Export Citation
  • Marchuck, G. I., and A. S. Sarkisyan, 1988: Mathematical Modelling of Ocean Circulation. Springer-Verlag, 292 pp.

  • McWilliams, J. C., 1989: Statistical properties of decaying geostrophic turbulence. J. Fluid Mech., 108 , 199230.

  • Müller, T. J., and G. Siedler, 1992: Multi-year current time series in the eastern North Atlantic Ocean. J. Mar. Res., 50 , 6398.

  • Ollitrault, M., 1995: La circulation générale de l’Atlantique Nord subtropical vers 700 m de profondeur, révélée par des flotteurs dérivants de subsurface (The North Atlantic subtropical circulation at 700-m depth, shown by subsurface drifting floats). C. R. Acad. Sci., 320 , 2. 153160.

    • Search Google Scholar
    • Export Citation
  • Onken, R., 1993: The Azores Countercurrent. J. Phys. Oceanogr., 23 , 16381646.

  • Özgökmen, T. M., E. P. Chassignet, and C. G. H. Rooth, 2001: On the connection between the Mediterranean Outflow and the Azores Current. J. Phys. Oceanogr., 31 , 461480.

    • Search Google Scholar
    • Export Citation
  • Papoulis, A., 1991: Probability, Random Variables and Stochastic Processes. 3d ed. McGraw-Hill, 666 pp.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer-Verlag, 453 pp.

  • Pingree, P., and B. Sinha, 1998: Dynamic topography (ERS-1/2 and seatruth) of subtropical ring (STORM 0) in the STORM corridor (32°N–34°N, Eastern basin, North Atlantic Ocean). J. Mar. Biol. Ass. UK, 78 , 351376.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., M. J. Griffiths, S. A. Cunningham, J. F. Read, F. F. Perez, and A. F. Rios, 1996: Vivaldi 1991—A study of the formation, circulation and ventilation of eastern North Atlantic Central Water. Prog. Oceanogr., 37 , 167192.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in Fortran: The Art of Scientific Computing. 2d ed. Cambridge University Press, 963 pp.

    • Search Google Scholar
    • Export Citation
  • Provost, C., C. Escoffier, K. Maamaatuaiahutapu, A. Kartavtseff, and V. Garçon, 1999: Subtropical mode waters in the South Atlantic Ocean. J. Geophys. Res., 104 , 2103321050.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., 1983: Optimal estimation of hydrographic station data and derived fields. J. Phys. Oceanogr., 13 , 15441549.

  • Schmid, C., G. Siedler, and W. Zenk, 2000: Dynamics of intermediate water circulation in the subtropical South Atlantic. J. Phys. Oceanogr., 30 , 31913211.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33 , 151173.

  • Schmitz, W. J., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Schott, F., and H. Stommel, 1978: Beta spirals and absolute velocities in different oceans. Deep-Sea Res., 25 , 9611010.

  • Stommel, H., and F. Schott, 1977: The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res., 29 , 325329.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and G. Veronis, 1981: Variational inverse method for study of ocean circulation. Deep-Sea Res., 28 , 11471160.

  • Stramma, L., and H. J. Isemer, 1988: Seasonal variability of meridional temperature fluxes in the eastern North Atlantic Ocean. J. Mar. Res., 46 , 281299.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., and G. Siedler, 1988: Seasonal changes in the North Atlantic subtropical gyre. J. Geophys. Res., 93 , 81118118.

  • Stramma, L., and R. G. Peterson, 1990: The South Atlantic Current. J. Phys. Oceanogr., 20 , 846859.

  • Thompson, R. O. R. Y., 1971: Why there is an intense eastward current in the North Atlantic but not in the South Atlantic. J. Phys. Oceanogr., 1 , 235237.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., L. D. Talley, and M. S. McCartney, 1994: Water mass distributions in the western South Atlantic: A section from South Georgia Island (54°S) northward across the equator. J. Mar. Res., 52 , 5581.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1987: Inverse methods for ocean circulation. General Circulation of the Ocean, H. D. I. Abarbanel and W. R. Young, Eds., Springer-Verlag, 102–132.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1978: The general circulation of the North Atlantic west of 50°W determined from inverse methods. Rev. Geophys., 16 , 583620.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 129 16
PDF Downloads 265 83 12