Impact of Channel Geometry and Rotation on the Trapping of Internal Tides

Sybren Drijfhout Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by Sybren Drijfhout in
Current site
Google Scholar
PubMed
Close
and
Leo R. M. Maas Royal Netherlands Institute for Sea Research (NIOZ), Texel, Netherlands

Search for other papers by Leo R. M. Maas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The generation and propagation of internal tides has been studied with an isopycnic three-dimensional ocean model. The response of a uniformly stratified sea in a channel, which is forced by a barotropic tide on its open boundary, is considered. The tide progresses into the channel and forces internal tides over a continental slope at the other end. The channel has a length of 1200 km and a width of 191.25 km. The bottom profile has been varied. In a series of four experiments it is shown how the cross-channel geometry affects the propagation and trapping of internal tides, and the penetration scale of wave energy, away from the continental slope, is discussed. In particular it is found that a cross-channel bottom slope constrains the penetration of the internal tidal energy. Most internal waves refract toward a cross-channel plane where they are trapped. The exception is formed by edge waves that carry part of the energy away from the continental slope. In the case of rotation near the continental slope, the Poincaré waves that arise in the absence of a cross-channel slope no longer bear the characteristics of the wave attractor predicted by 2D theory, but are almost completely arrested, while the right-bound Kelvin wave preserves the 2D attractor in the cross-channel plane, which is present in the nonrotating case. The reflected, barotropic right-bound Kelvin wave acts as a secondary internal wave generator along the cross-channel slope.

Corresponding author address: S. Drijfhout, Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, Netherlands. Email: drijfhou@knmi.nl

Abstract

The generation and propagation of internal tides has been studied with an isopycnic three-dimensional ocean model. The response of a uniformly stratified sea in a channel, which is forced by a barotropic tide on its open boundary, is considered. The tide progresses into the channel and forces internal tides over a continental slope at the other end. The channel has a length of 1200 km and a width of 191.25 km. The bottom profile has been varied. In a series of four experiments it is shown how the cross-channel geometry affects the propagation and trapping of internal tides, and the penetration scale of wave energy, away from the continental slope, is discussed. In particular it is found that a cross-channel bottom slope constrains the penetration of the internal tidal energy. Most internal waves refract toward a cross-channel plane where they are trapped. The exception is formed by edge waves that carry part of the energy away from the continental slope. In the case of rotation near the continental slope, the Poincaré waves that arise in the absence of a cross-channel slope no longer bear the characteristics of the wave attractor predicted by 2D theory, but are almost completely arrested, while the right-bound Kelvin wave preserves the 2D attractor in the cross-channel plane, which is present in the nonrotating case. The reflected, barotropic right-bound Kelvin wave acts as a secondary internal wave generator along the cross-channel slope.

Corresponding author address: S. Drijfhout, Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, Netherlands. Email: drijfhou@knmi.nl

Save
  • Azevedo, A., J. C. B. da Silva, and A. L. New, 2006: On the generation and propagation of internal solitary waves in the southern Bay of Biscay. Deep-Sea Res. I, 53 , 927941.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29 , 307338.

  • Bleck, R., and D. B. Boudra, 1981: Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11 , 755770.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., and L. T. Smith, 1990: A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean. 1. Model development and supporting experiments. J. Geophys. Res., 95 , 32733285.

    • Search Google Scholar
    • Export Citation
  • Dias, J., 2006: Internal tide spatial variability off western Portugal detected by current meter observations. Geophys. Res. Lett., 33 .L06613, doi:10.1029/2005GL024957.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., 2003: Why anticyclones can split. J. Phys. Oceanogr., 33 , 15791591.

  • Drijfhout, S. S., C. A. Katsman, L. de Steur, P. C. F. van der Vaart, P. J. van Leeuwen, and C. Veth, 2003: Modeling the initial, fast sea-surface height decay of Agulhas ring “Astrid”. Deep-Sea Res. II, 50 , 299319.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , 2247522502.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1988: A numerical model investigation of tides and diurnal-period continental shelf waves along Vancouver Island. J. Phys. Oceanogr., 18 , 115139.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3 , 225264.

  • Gerkema, T., F-P. A. Lam, and L. R. M. Maas, 2004: Internal tides in the Bay of Biscay: Conversion rates and seasonal effects. Deep-Sea Res. II, 51 , 29953008.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Holloway, P. E., 1996: A numerical model of internal tides with application to the Australian North West Shelf. J. Phys. Oceanogr., 26 , 2137.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., and M. A. Merrifield, 1999: Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res., 104 , 2593725952.

    • Search Google Scholar
    • Export Citation
  • Horn, W., and J. Meincke, 1976: Note on the tidal current field in the continental slope area of Northwest Africa. Memo. Soc. Roy. Sci. Liege, 6 , 10. 3142.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P., and H. van Haren, 2006: Sub-inertial modulation of semi-diurnal currents over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res. I, 53 , 627655.

    • Search Google Scholar
    • Export Citation
  • Lam, F-P. A., L. R. M. Maas, and T. Gerkema, 2004: Spatial structure of tidal and residual currents as observed over the shelf break in the Bay of Biscay. Deep-Sea Res. I, 51 , 10751096.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Le Cann, B., 1990: Barotropic tidal dynamics of the Bay of Biscay shelf: Observations, numerical modelling and physical interpretation. Cont. Shelf Res., 10 , 723758.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res., 108 .3068, doi:10.1029/2001JC001128.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., D. G. Wright, and D. Brickman, 2001: Internal tide generation over topography: Experiments with a free-surface z-level ocean model. J. Atmos. Oceanic Technol., 18 , 10761091.

    • Search Google Scholar
    • Export Citation
  • Maas, L. R. M., 2001: Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids. J. Fluid Mech., 437 , 1328.

  • Maas, L. R. M., 2005: Wave attractors: Linear yet nonlinear. Int. J. Bifurcation Chaos, 15 , 27572782.

  • Maas, L. R. M., and F-P. A. Lam, 1995: Geometric focusing of internal waves. J. Fluid Mech., 300 , 141.

  • Maas, L. R. M., D. Benielli, J. Sommeria, and F-P. A. Lam, 1997: Observation of an internal wave attractor in a confined, stably stratified fluid. Nature, 388 , 557561.

    • Search Google Scholar
    • Export Citation
  • Manders, A. M. M., and L. R. M. Maas, 2003: Observations of inertial waves in a rectangular basin with one sloping boundary. J. Fluid Mech., 493 , 5988.

    • Search Google Scholar
    • Export Citation
  • Manders, A. M. M., and L. R. M. Maas, 2004: On the three-dimensional structure of the inertial wave field in a rectangular basin with one sloping boundary. Fluid Dyn. Res., 35 , 121.

    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res. I, 42 , 135148.

  • Müller, P., and X. Liu, 2000: Scattering of internal waves at finite topography in two dimensions. Part II: Spectral calculations and boundary mixing. J. Phys. Oceanogr., 30 , 550563.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • New, A. L., 1988: Internal tidal mixing in the Bay of Biscay. Deep-Sea Res., 35 , 691709.

  • Ogilvie, G. I., and D. N. C. Lin, 2004: Tidal dissipation in rotating giant planets. Astrophys. J., 610 , 477509.

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21 , 251269.

  • Phillips, O. M., 1963: Energy transfer in rotating fluids by reflection of inertial waves. Phys. Fluids, 6 , 513520.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2d ed. Cambridge University Press, 336 pp.

  • Pingree, R. D., and A. L. New, 1989: Downward propagation of internal tidal energy into the Bay of Biscay. Deep-Sea Res., 36 , 735758.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., and A. L. New, 1991: Abyssal penetration and bottom reflection of internal tidal energy in the Bay of Biscay. J. Phys. Oceanogr., 21 , 2839.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Ray, R., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40 , 135162.

    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., and H. L. Kuo, 1984: A radiation boundary condition for multidimensional flows. Quart. J. Roy. Meteor. Soc., 110 , 535551.

    • Search Google Scholar
    • Export Citation
  • Rieutord, M., B. Georgeot, and L. Valdettaro, 2001: Inertial waves in a rotating spherical shell: Attractors and asymptotic spectrum. J. Fluid Mech., 435 , 103144.

    • Search Google Scholar
    • Export Citation
  • Sherwin, T. J., 1991: Evidence of a deep internal tide in the Faeroe Shetland channel. Tidal Hydrodynamics, B. B. Parker, Ed., Wiley and Sons, 469–488.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29 .2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 506 241 94
PDF Downloads 281 97 0