Second-Order Theory and Setup in Surface Gravity Waves: A Comparison with Experimental Data

A. Toffoli Katholieke Universiteit Leuven, Leuven, Belgium

Search for other papers by A. Toffoli in
Current site
Google Scholar
PubMed
Close
,
J. Monbaliu Katholieke Universiteit Leuven, Leuven, Belgium

Search for other papers by J. Monbaliu in
Current site
Google Scholar
PubMed
Close
,
M. Onorato Universitá di Torino, Turin, Italy

Search for other papers by M. Onorato in
Current site
Google Scholar
PubMed
Close
,
A. R. Osborne Universitá di Torino, Turin, Italy

Search for other papers by A. R. Osborne in
Current site
Google Scholar
PubMed
Close
,
A. V. Babanin Swinburne University of Technology, Hawthorn, Australia

Search for other papers by A. V. Babanin in
Current site
Google Scholar
PubMed
Close
, and
E. Bitner-Gregersen Det Norske Veritas, Høvik, Norway

Search for other papers by E. Bitner-Gregersen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The second-order, three-dimensional, finite-depth wave theory is here used to investigate the statistical properties of the surface elevation and wave crests of field data from Lake George, Australia. A direct comparison of experimental and numerical data shows that, as long as the nonlinearity is small, the second-order model describes the statistical properties of field data very accurately. By low-pass filtering the Lake George time series, there is evidence that some energetic wave groups are accompanied by a setup instead of a setdown. A numerical study of the coupling coefficient of the second-order model reveals that such an experimental result is consistent with the second-order theory, provided directional spreading is included in the wave spectrum. In particular, the coupling coefficient of the second-order difference contribution predicts a setup as a result of the interaction of two waves with the same frequency but with different directions. This result is also confirmed by numerical simulations. Bispectral analysis, furthermore, indicates that this setup is a statistically significant feature of the observed wave records.

& Current affiliation: Det Norske Veritas, Høvik, Norway

Corresponding author address: Alessandro Toffoli, Det Norske Veritas, Veritasveien 1, 1322 Høvik, Norway. Email: alessandro.toffoli@dnv.com

Abstract

The second-order, three-dimensional, finite-depth wave theory is here used to investigate the statistical properties of the surface elevation and wave crests of field data from Lake George, Australia. A direct comparison of experimental and numerical data shows that, as long as the nonlinearity is small, the second-order model describes the statistical properties of field data very accurately. By low-pass filtering the Lake George time series, there is evidence that some energetic wave groups are accompanied by a setup instead of a setdown. A numerical study of the coupling coefficient of the second-order model reveals that such an experimental result is consistent with the second-order theory, provided directional spreading is included in the wave spectrum. In particular, the coupling coefficient of the second-order difference contribution predicts a setup as a result of the interaction of two waves with the same frequency but with different directions. This result is also confirmed by numerical simulations. Bispectral analysis, furthermore, indicates that this setup is a statistically significant feature of the observed wave records.

& Current affiliation: Det Norske Veritas, Høvik, Norway

Corresponding author address: Alessandro Toffoli, Det Norske Veritas, Veritasveien 1, 1322 Høvik, Norway. Email: alessandro.toffoli@dnv.com

Save
  • Battjes, J., H. Bakkenes, T. Janssen, and A. van Dongeren, 2004: Shoaling of subharmonic gravity waves. J. Geophys. Res., 109 .C02009, doi:10.1029/2003JC001863.

    • Search Google Scholar
    • Export Citation
  • Bouws, E., H. Günther, W. Rosenthal, and C. Vincent, 1985: Similarity of the wind wave spectrum in finite depth water. 1. Spectral form. J. Geophys. Res., 90 , 975986.

    • Search Google Scholar
    • Export Citation
  • Dalzell, J., 1999: A note on finite depth second-order wave-wave interactions. Appl. Ocean Res., 21 , 105111.

  • Elgar, S., and R. T. Guza, 1985: Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech., 161 , 425448.

  • Emery, W. J., and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. 2d ed. Elsevier, 638 pp.

  • Forristall, G. Z., 2000: Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr., 30 , 19311943.

  • Goda, Y., 2000: Random Seas and Design of Maritime Structures. P. L.-F. Liu, Ed., Advanced Series on Ocean Engineering, Vol. 15, World Scientific, 443 pp.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum. Part I: General theory. J. Fluid Mech., 12 , 481500.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., W. Munk, and G. MacDonald, 1963: Bispectra of ocean waves. Time Series Analysis, M. Rosenblatt, Ed., John Wiley and Sons, 125–139.

    • Search Google Scholar
    • Export Citation
  • Haubrich, R. A., 1965: Earth noise, 5 to 500 millicycles per second. I. Spectral stationarity normality and nonlinearity. J. Geophys. Res., 70 , 14151427.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., K. K. Kahma, H. E. Krogstad, S. Lehner, J. Monbaliu, and L. R. Wyatt, 2005: Measuring and Analysing the Directional Spectrum of Ocean Waves. COST, 465 pp.

    • Search Google Scholar
    • Export Citation
  • Haver, S., and J. Andersen, 2000: Freak waves: Rare realizations of a typical population or typical realizations of a rare population? Proc. 10th Int. Conf. on Offshore and Polar Engineering, Seattle, WA, ISOPE, 123–130.

  • Herbers, T. H., S. Elgar, and R. T. Guza, 1994: Infragravity-frequency (0.005–0.05 hz) motions on the shelf. Part I: Forced waves. J. Phys. Oceanogr., 24 , 917927.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H., S. Elgar, R. T. Guza, and W. C. O’Reilly, 1995: Infragravity-frequency (0.005–0.05 hz) motions on the shelf. Part II: Free waves. J. Phys. Oceanogr., 25 , 10631079.

    • Search Google Scholar
    • Export Citation
  • IAHR Working Group on Wave Generation and Analysis, 1986: List of sea-state parameters. J. Waterw., Port, Coastal, Ocean Eng., 115 , 793808.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2003: Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr., 33 , 863884.

  • Janssen, P. A. E. M., and M. Onorato, 2005: The shallow water limit of the Zakharov equation and consequences of (freak) wave prediction. ECMWF Tech. Memo. 464, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 15 pp.

  • Jensen, J. J., 2005: Conditional second-order short-crested water waves applied to extreme wave episode. J. Fluid Mech., 545 , 2940.

  • Kim, Y. C., and E. J. Powers, 1979: Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci., 7 , 120131.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1963: The effect of non-linearities on statistical distributions in the theory of sea waves. J. Fluid Mech., 17 , 459480.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with application to “surf beats”. J. Fluid Mech., 13 , 481504.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stresses in water waves: A physical discussion with applications. Deep-Sea Res., 11 , 529562.

    • Search Google Scholar
    • Export Citation
  • Martinsen, T., and S. R. Winterstein, 1992: On the skewness of random surface waves. Proc. Second Int. Conf. on Offshore and Polar Engineering, Vancouver, BC, Canada, ISOPE, 472–478.

  • Mori, N., and P. A. E. M. Janssen, 2006: On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr., 36 , 14711483.

  • Nieto-Borge, J. C., S. Lehner, T. Schneiderhan, J. Schulz-Stellenfleth, and A. Niedermeier, 2004: Use of spaceborne synthetic aperture radar for offshore wave analysis. Proc. 23rd Int. Conf. on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, OMAE, CD-ROM, OMAE2004-51588.

  • Ochi, M. K., 1998: Ocean Waves: The Stochastic Approach. Cambridge University Press, 319 pp.

  • Okihiro, M., R. T. Guza, and R. J. Seymour, 1992: Bound infragravity waves. J. Geophys. Res., 97 , 1145311469.

  • Onorato, M., A. Osborne, M. Serio, L. Cavaleri, C. Brandini, and C. Stansberg, 2006: Extreme waves, modulational instability and second order theory: Wave flume experiments on irregular waves. Eur. J. Mech., 25 , 586601.

    • Search Google Scholar
    • Export Citation
  • Osborne, A. R., and M. Petti, 1994: Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform. Phys. Fluids, 6 , 17271744.

    • Search Google Scholar
    • Export Citation
  • Prevosto, M., H. E. Krogstad, and A. Robin, 2000: Probability distributions for maximum wave and crest heights. Coastal Eng., 40 , 329360.

    • Search Google Scholar
    • Export Citation
  • Sharma, N., and R. Dean, 1981: Second-order directional seas and associated wave forces. Soc. Petrol. Eng. J., 4 , 129140.

  • Socquet-Juglard, H., K. Dysthe, K. Trulsen, H. E. Krogstad, and J. Liu, 2005: Probability distributions of surface gravity waves during spectral changes. J. Fluid Mech., 542 , 195216.

    • Search Google Scholar
    • Export Citation
  • Tayfun, A. M., 1980: Narrow-band nonlinear sea waves. J. Geophys. Res., 85 , 15481552.

  • Toffoli, A., M. Onorato, and J. Monbaliu, 2006: Wave statistics in unimodal and bimodal seas from a second-order model. Eur. J. Mech., 25 , 649661.

    • Search Google Scholar
    • Export Citation
  • Ursell, F., 1953: The long wave paradox in the theory of gravity waves. Proc. Cambridge Philos. Soc., 49 , 685694.

  • Walker, D. A. G., P. H. Taylor, and R. E. Taylor, 2004: The shape of large surface waves on the open sea and the Draupner New Year wave. Appl. Ocean Res., 26 , 7383.

    • Search Google Scholar
    • Export Citation
  • Whitham, G. B., 1974: Linear and Nonlinear Waves. Wiley, 636 pp.

  • Young, I. R., L. A. Verhagen, and S. K. Khatri, 1996: The growth of fetch limited waves in water depth of finite depth. Part 3. Directional spectra. Coastal Eng., 29 , 101121.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., M. L. Banner, M. A. Donelan, A. V. Babanin, W. Melville, F. Veron, and C. McCormick, 2005: An integrated system for the study of wind-wave source terms in finite-depth water. J. Atmos. Oceanic Technol., 22 , 814831.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 566 144 14
PDF Downloads 403 121 11