Interannual Variations in Upper-Ocean Heat Content and Heat Transport Convergence in the Western North Atlantic

Shenfu Dong Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Shenfu Dong in
Current site
Google Scholar
PubMed
Close
,
Susan L. Hautala School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Susan L. Hautala in
Current site
Google Scholar
PubMed
Close
, and
Kathryn A. Kelly Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Kathryn A. Kelly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Subsurface temperature data in the western North Atlantic Ocean are analyzed to study the variations in the heat content above a fixed isotherm and contributions from surface heat fluxes and oceanic processes. The study region is chosen based on the data density; its northern boundary shifts with the Gulf Stream position and its southern boundary shifts to contain constant volume. The temperature profiles are objectively mapped to a uniform grid (0.5° latitude and longitude, 10 m in depth, and 3 months in time). The interannual variations in upper-ocean heat content show good agreement with the changes in the sea surface height from the Ocean Topography Experiment (TOPEX)/Poseidon altimeter; both indicate positive anomalies in 1994 and 1998–99 and negative anomalies in 1996–97. The interannual variations in surface heat fluxes cannot explain the changes in upper-ocean heat storage rate. On the contrary, a positive anomaly in heat released to the atmosphere corresponds to a positive upper-ocean heat content anomaly. The oceanic heat transport, mainly owing to the geostrophic advection, controls the interannual variations in heat storage rate, which suggests that geostrophic advection plays an important role in the air–sea heat exchange. The 18°C isotherm depth and layer thickness also show good correspondence to the upper-ocean heat content; a deep and thin 18°C layer corresponds to a positive heat content anomaly. The oceanic transport in each isotherm layer shows an annual cycle, converging heat in winter, and diverging in summer in a warm layer; it also shows interannual variations with the largest heat convergence occurring in even warmer layers during the period of large ocean-to-atmosphere flux.

Corresponding author address: Shenfu Dong, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0230, La Jolla, CA 92093-0230. Email: shdong@ucsd.edu

Abstract

Subsurface temperature data in the western North Atlantic Ocean are analyzed to study the variations in the heat content above a fixed isotherm and contributions from surface heat fluxes and oceanic processes. The study region is chosen based on the data density; its northern boundary shifts with the Gulf Stream position and its southern boundary shifts to contain constant volume. The temperature profiles are objectively mapped to a uniform grid (0.5° latitude and longitude, 10 m in depth, and 3 months in time). The interannual variations in upper-ocean heat content show good agreement with the changes in the sea surface height from the Ocean Topography Experiment (TOPEX)/Poseidon altimeter; both indicate positive anomalies in 1994 and 1998–99 and negative anomalies in 1996–97. The interannual variations in surface heat fluxes cannot explain the changes in upper-ocean heat storage rate. On the contrary, a positive anomaly in heat released to the atmosphere corresponds to a positive upper-ocean heat content anomaly. The oceanic heat transport, mainly owing to the geostrophic advection, controls the interannual variations in heat storage rate, which suggests that geostrophic advection plays an important role in the air–sea heat exchange. The 18°C isotherm depth and layer thickness also show good correspondence to the upper-ocean heat content; a deep and thin 18°C layer corresponds to a positive heat content anomaly. The oceanic transport in each isotherm layer shows an annual cycle, converging heat in winter, and diverging in summer in a warm layer; it also shows interannual variations with the largest heat convergence occurring in even warmer layers during the period of large ocean-to-atmosphere flux.

Corresponding author address: Shenfu Dong, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0230, La Jolla, CA 92093-0230. Email: shdong@ucsd.edu

Save
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105 , 1682316842.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., M. A. Alexander, D. S. Battisti, D. D. Houghton, and L. M. Keller, 1998: Atmosphere–ocean interaction in the North Atlantic: Near-surface climate variability. J. Climate, 11 , 16151632.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1976: Horizontal advection of temperature for low-frequency motions. Deep-Sea Res., 23 , 11651174.

  • Carter, E. F., and A. R. Robinson, 1987: Analysis models for the estimation of oceanic fields. J. Atmos. Oceanic Technol., 4 , 4974.

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., and Coauthors, 2002: Introduction. Vol. 1, World Ocean Atlas 2001, S. Levitus, Ed., NOAA Atlas NESDIS 42, U.S. Government Printing Office, 159 pp.

  • Dawe, J. T., and L. Thompson, 2007: PDO-related heat and temperature budget changes in a model of the North Pacific. J. Climate, 20 , 20922108.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., 1996: North Atlantic interannual variability in a coupled ocean–atmosphere model. J. Climate, 9 , 23562375.

  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., and R. T. Sutton, 2001: The dominant mechanisms of variability in Atlantic ocean heat transport in a coupled ocean-atmosphere GCM. Geophys. Res. Lett., 28 , 24452448.

    • Search Google Scholar
    • Export Citation
  • Dong, S., and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34 , 12141231.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Grey, S. M., K. Haines, and A. Troccoli, 2000: A study of temperature changes in the upper North Atlantic: 1950–94. J. Climate, 13 , 26972711.

    • Search Google Scholar
    • Export Citation
  • Grotzner, A., M. Latif, and T. P. Barnett, 1998: A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM. J. Climate, 11 , 831847.

    • Search Google Scholar
    • Export Citation
  • Halliwell Jr., G. R., 1998: Simulation of North Atlantic decadal/mutidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies. J. Phys. Oceanogr., 28 , 521.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and S. T. Gille, 1990: Gulf Stream surface transport and statistics at 69°W from the Geosat altimeter. J. Geophys. Res., 95 , 31493161.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., L. Thompson, and F. Vivier, 1999: Heat content changes in the Pacific Ocean. Science, 284 , 1735.

  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. O., 2003: Observation of general circulation and water mass variability in the North Atlantic subtropical mode water region. Ph.D. thesis, University of Washington, 161 pp.

  • Ladd, C., and L. Thompson, 2000: Formation mechanisms for North Pacific central and eastern subtropical mode waters. J. Phys. Oceanogr., 30 , 868887.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and L. Thompson, 2001: Water mass formation in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 31 , 15171537.

  • Lozier, M. S., W. B. Owen, and R. G. Curry, 1995: The climatology of the North Atlantic. Prog. Oceanogr., 36 , 144.

  • Luksch, U., 1996: Simulation of North Atlantic low-frequency SST variability. J. Climate, 9 , 20832092.

  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40 , (Suppl.). 427464.

  • Qiu, B., 1994: Determining the mean Gulf Stream and its recirculations through combining hydrographic and altimetric data. J. Geophys. Res., 99 , 951962.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Gilson, J. Willis, P. Sutton, and K. Ridgway, 2005: Closing the time-varying mass and heat budgets for large ocean areas: The Tasman box. J. Climate, 18 , 23302343.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., and E. Gottlieb, 1998: The Oleander Project: Monitoring the variability of the Gulf Stream and adjacent waters between New Jersey and Bermuda. Bull. Amer. Meteor. Soc., 79 , 518.

    • Search Google Scholar
    • Export Citation
  • Sato, O. T., P. S. Polito, and W. T. Liu, 2000: Importance of salinity measurements in the heat storage estimation from TOPEX/POSEIDON. Geophys. Res. Lett., 27 , 549551.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13 , 28452862.

    • Search Google Scholar
    • Export Citation
  • Singh, S., and K. A. Kelly, 1997: Monthly maps of sea surface height in the North Atlantic and zonal indices for the Gulf Stream using TOPEX/Poseidon altimeter data. Woods Hole Oceanographic Institution Tech. Rep. WHOI-97-06, 48 pp.

  • Sutton, R., and P. P. Mathieu, 2002: Response of the atmosphere-ocean mixed-layer system to anomalous ocean heat-flux convergence. Quart. J. Roy. Meteor. Soc., 128 , 12591275.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. E. Raymer, 1982: Eighteen degree water variability. J. Mar. Res., 40 , 757775.

  • Vivier, F., K. A. Kelly, and L. Thompson, 2002: Heat budget of the Kuroshio Extension region: 1993–99. J. Phys. Oceanogr., 32 , 34363454.

    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and A. H. Oort, 1973: New estimate of annual poleward energy transport by Northern Hemisphere oceans. J. Phys. Oceanogr., 3 , 169172.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1972: Insensitivity of subtropical mode water characteristics to meteorological fluctuations. Deep-Sea Res., 19 , 119.

  • White, W. B., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36 , 169217.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and C-K. Tai, 1995: Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry. J. Geophys. Res., 100 , 2493424954.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1959: The 18°C water in the Sargasso Sea. Deep-Sea Res., 5 , 297305.

  • Yasuda, T., and K. Hanawa, 1997: Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 27 , 858870.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., N. Schneider, D. W. Pierce, and T. P. Barnett, 2001: Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J. Climate, 14 , 40274046.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 152 17
PDF Downloads 266 70 8