The Role of Wind Stress Curl in Jet Separation at a Cape

Renato M. Castelao College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Renato M. Castelao in
Current site
Google Scholar
PubMed
Close
and
John A. Barth College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by John A. Barth in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A high-resolution numerical model is used to study the importance of spatial variability in the wind forcing to the separation of a coastal upwelling jet at a cape. An idealized topography and wind field based on observations from the Cape Blanco (Oregon) region are used. Several simulations are investigated, with both the intensity and the spatial structure of the wind forcing varied to isolate the importance of the observed intensification in the wind stress and wind stress curl magnitudes to the separation process. A simulation using a straight coast confirms that the presence of the cape is crucial for separation. Wind stress intensification by itself, with zero curl, does not aid separation. The wind stress curl intensification south of the cape, on the other hand, is important for controlling details of the process. Because the positive wind stress curl drives upwelling, isotherms in the offshore region tilt upward, creating a pressure gradient that sustains an intensification of the southward velocities via the thermal wind balance. This aids jet separation via continuity and by creating potential vorticity contours that track far offshore of the cape. The timing of the separation is dependent on the intensity of the wind stress curl (stronger curl leads to earlier separation), while how far offshore the jet is deflected depends on the offshore extent of the region of positive curl close to the coast (increasing the extent increases the deflection).

* Current affiliation: Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Corresponding author address: Renato M. Castelao, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901-8521. Email: castelao@marine.rutgers.edu

Abstract

A high-resolution numerical model is used to study the importance of spatial variability in the wind forcing to the separation of a coastal upwelling jet at a cape. An idealized topography and wind field based on observations from the Cape Blanco (Oregon) region are used. Several simulations are investigated, with both the intensity and the spatial structure of the wind forcing varied to isolate the importance of the observed intensification in the wind stress and wind stress curl magnitudes to the separation process. A simulation using a straight coast confirms that the presence of the cape is crucial for separation. Wind stress intensification by itself, with zero curl, does not aid separation. The wind stress curl intensification south of the cape, on the other hand, is important for controlling details of the process. Because the positive wind stress curl drives upwelling, isotherms in the offshore region tilt upward, creating a pressure gradient that sustains an intensification of the southward velocities via the thermal wind balance. This aids jet separation via continuity and by creating potential vorticity contours that track far offshore of the cape. The timing of the separation is dependent on the intensity of the wind stress curl (stronger curl leads to earlier separation), while how far offshore the jet is deflected depends on the offshore extent of the region of positive curl close to the coast (increasing the extent increases the deflection).

* Current affiliation: Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Corresponding author address: Renato M. Castelao, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901-8521. Email: castelao@marine.rutgers.edu

Save
  • Allen, J. S., 1980: Models of wind-driven currents on the continental shelf. Annu. Rev. Fluid Mech., 12 , 389–433.

  • Arthur, R. S., 1965: On the calculation of vertical motion in eastern boundary currents from determinations of horizontal motion. J. Geophys. Res., 70 , 2799–2803.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., and R. L. Smith, 1998: Separation of a coastal upwelling jet at Cape Blanco, Oregon, USA. S. Afr. J. Mar. Sci., 19 , 5–14.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., S. D. Pierce, and R. L. Smith, 2000: A separating coastal upwelling jet at Cape Blanco, Oregon and its connection to the California Current System. Deep-Sea Res. II, 47 , 783–810.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., T. J. Cowles, P. M. Kosro, R. K. Shearman, A. Huyer, and R. L. Smith, 2002: Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current. J. Geophys. Res., 107 .3057, doi:10.1029/2001JC000956.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., S. D. Pierce, and R. M. Castelao, 2005a: Time-dependent, wind-driven flow over a shallow midshelf submarine bank. J. Geophys. Res., 110 .C10S05, doi:10.1029/2004JC002761.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., S. D. Pierce, and T. J. Cowles, 2005b: Mesoscale structure and its seasonal evolution in the northern California Current System. Deep-Sea Res. II, 52 , 5–28.

    • Search Google Scholar
    • Export Citation
  • Batteen, M. L., 1997: Wind-forced modeling studies of currents, meanders, and eddies in the California Current System. J. Geophys. Res., 102 , 985–1010.

    • Search Google Scholar
    • Export Citation
  • Breaker, L. C., and C. N. K. Mooers, 1986: Oceanic variability off the central California coast. Prog. Oceanogr., 17 , 61–135.

  • Capet, X. J., P. Marchesiello, and J. C. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31 .L13311, doi:10.1029/2004GL020123.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., and J. A. Barth, 2006: The relative importance of wind strength and alongshelf bathymetric variations on the separation of a coastal upwelling jet. J. Phys. Oceanogr., 36 , 412–425.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., T. P. Mavor, J. A. Barth, and L. C. Breaker, 2006: Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res., 111 .C09026, doi:10.1029/2006JC003541.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of across-shore open boundaries in a barotropic ocean model. J. Phys. Oceanogr., 15 , 1060–1075.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 , 978–983.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37 , 495–517.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., and J. A. Barth, 2001: The hydraulics of an evolving upwelling jet flowing around a cape. J. Phys. Oceanogr., 31 , 226–243.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., T. Holt, D. P. Rogers, and K. Edwards, 2000: Large-scale structure of the June–July 1996 marine boundary layer along California and Oregon. Mon. Wea. Rev., 128 , 1632–1652.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 6 , 141–164.

  • Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45 , 55–62.

    • Search Google Scholar
    • Export Citation
  • Gan, J., and J. S. Allen, 2002: A modeling study of shelf circulation off northern California in the region of the Coastal Ocean Dynamics Experiment: Response to relaxation of upwelling winds. J. Geophys. Res., 107 .3123, doi:10.1029/2000JC000768.

    • Search Google Scholar
    • Export Citation
  • Gan, J., and J. S. Allen, 2005a: On open boundary conditions for a limited-area coastal model off Oregon. Part 1: Response to idealized wind forcing. Ocean Modell., 8 , 115–133.

    • Search Google Scholar
    • Export Citation
  • Gan, J., and J. S. Allen, 2005b: Modeling upwelling circulation off the Oregon coast. J. Geophys. Res., 110 .C10S07, doi:10.1029/2004JC002692.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., A. Beckman, and K. Hedstrom, 1991: Dynamical simulations of filament formation and evolution in the coastal transition zone. J. Geophys. Res., 96 , 15017–15040.

    • Search Google Scholar
    • Export Citation
  • Haynes, R., E. D. Barton, and I. Pilling, 1993: Development, persistence and variability of upwelling filaments off the Atlantic coast of the Iberian Peninsula. J. Geophys. Res., 98 , 22681–22692.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Huyer, A., J. H. Fleischbein, J. Keister, P. M. Kosro, N. Perlin, R. L. Smith, and P. A. Wheeler, 2005: Two coastal upwelling domains in the northern California Current System. J. Mar. Res., 63 , 901–929.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3 , 1–20.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33 , 753–783.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and C. E. Tansley, 2001: An implicit formula for boundary current separation. J. Phys. Oceanogr., 31 , 1633–1638.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851–875.

    • Search Google Scholar
    • Export Citation
  • Mesias, J. M., R. P. Matano, and P. T. Strub, 2001: A numerical study of the upwelling circulation off central Chile. J. Geophys. Res., 106 , 19611–19623.

    • Search Google Scholar
    • Export Citation
  • Mesias, J. M., R. P. Matano, and P. T. Strub, 2003: Dynamical analysis of the upwelling circulation off central Chile. J. Geophys. Res., 108 .3085, doi:10.1029/2001JC001135.

    • Search Google Scholar
    • Export Citation
  • Narimousa, S., and T. Maxworthy, 1987: On the effects of coastline perturbations on coastal currents and fronts. J. Phys. Oceanogr., 17 , 1296–1303.

    • Search Google Scholar
    • Export Citation
  • Palma, E. D., and R. P. Matano, 1998: On the implementation of passive open boundary conditions for a general circulation model: The barotropic mode. J. Geophys. Res., 103 , 1319–1341.

    • Search Google Scholar
    • Export Citation
  • Peffley, M. B., and J. J. O’Brien, 1976: A three-dimensional simulation of coastal upwelling off Oregon. J. Phys. Oceanogr., 6 , 164–180.

    • Search Google Scholar
    • Export Citation
  • Penven, P., C. Roy, A. Colin de Verdière, and J. Largier, 2000: Simulation of a coastal jet retention process using a barotropic model. Oceanol. Acta, 23 , 615–634.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., R. M. Samelson, and D. B. Chelton, 2004: Scatterometer and model wind and wind stress in the Oregon–northern California coastal zone. Mon. Wea. Rev., 132 , 2110–2129.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and J-H. Yoon, 1982: Eastern boundary currents and coastal upwelling. J. Phys. Oceanogr., 12 , 862–879.

  • Pickett, M. H., and J. D. Paduan, 2003: Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). J. Geophys. Res., 108 .3327, doi:10.1029/2003JC001902.

    • Search Google Scholar
    • Export Citation
  • Samelson, R., and Coauthors, 2002: Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season. J. Geophys. Res., 107 .3034, doi:10.1029/2001JC000900.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108 .3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9 , 347–404.

    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and D. B. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115 , 228–244.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 1995: The large-scale summer circulation of the California current. Geophys. Res. Lett., 22 , 207–210.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 2000: Altimeter-derived variability of surface velocities in the California Current System. 2: Seasonal circulation and eddy statistics. Deep-Sea Res. II, 47 , 831–870.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 326 87
PDF Downloads 270 73 11