Abstract
In the Nordic seas the Lofoten Basin is a region of high mesoscale activity. The generation mechanism and the conditions for the stability of a quasi-permanent vortex in the center of the Lofoten Basin are studied with a high-resolution ocean circulation model and altimeter data. The vortex and its generation mechanism manifest themselves by a pronounced sea surface height (SSH) signature and variability, which are found to be in agreement with altimeter data. The vortex results primarily from anticyclonic eddies shed from the eastern branch of the Norwegian Atlantic Current, which propagate southwestward. The large-scale bottom depression of the Lofoten Basin plays a crucial role for attracting anticyclones into the trough and for enabling the dynamical stability of the vortex. The water mass characteristics of the anticyclone lead to enhanced atmospheric interaction (heat loss) during wintertime. The cold water trapped in the upper part of the vortex preconditions convection in the following winter. This positive feedback mechanism tends to deepen convection progressively within the upper part of the vortex.
Corresponding author address: Armin Köhl, Institut für Meereskunde, Zentrum für Meeres- und Klimaforschung, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany. Email: koehl@ifm.uni-hamburg.de