• Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30 , 805832.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67 , 705722.

  • Cartwright, D. E., and R. J. Taylor, 1971: New computations of the tide-generating potential. Geophys. J. Roy. Astron. Soc., 23 , 4574.

    • Search Google Scholar
    • Export Citation
  • Cox, C., and H. Sandstrom, 1962: Coupling of surface and internal waves in water of variable depth. J. Oceanogr. Soc. Japan, 20 , 499513.

    • Search Google Scholar
    • Export Citation
  • Croll, J., 1890: Climate and Time in their Geological Relation: A Theory of Secular Changes of the Earth’s Climate. 2d ed. Appleton, 577 pp.

    • Search Google Scholar
    • Export Citation
  • Darwin, G. H., 1911: The Tides and Kindred Phenomena in the Solar System. 3d ed. Murray. (Republished in 1962 by W. H. Freeman, 378 pp.).

    • Search Google Scholar
    • Export Citation
  • Doodson, A. T., 1921: The harmonic development of the tide-generating potential. Philos. Trans. Roy. Soc. London, A100 , 305329.

  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data. J. Geophys. Res., 106 , 2247522502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109 .CO3003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Ffield, A. L., and A. Gordon, 1996: Tidal mixing signatures in the Indonesian Seas. J. Phys. Oceanogr., 26 , 19241937.

  • Garrett, C., 1979: Mixing in the ocean interior. Dyn. Atmos. Oceans, 3 , 239265.

  • Garrett, C., 2003: Internal tides and ocean mixing. Science, 301 , 18581859.

  • Godin, G., 1972: The Analysis of Tides. University of Toronto Press, 264 pp.

  • Hays, J. D., J. Imbrie, and N. J. Shackleton, 1976: Variations in the earth’s orbit: Pacemaker of the ice ages. Science, 194 , 11211132.

    • Search Google Scholar
    • Export Citation
  • Huybers, J., and C. Wunsch, 2005: Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434 , 491494.

  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179182.

    • Search Google Scholar
    • Export Citation
  • Loder, J. W., and C. Garrett, 1978: The 18.6-year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. J. Geophys. Res., 83 , 19671970.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., D. E. Holloway, and T. M. S. Johnston, 2001: The generation of internal tides at the Hawaiian Ridge. Geophys. Res. Lett., 28 , 559562.

    • Search Google Scholar
    • Export Citation
  • Milanković, M., 1941: Kanon der Erdbestrahlung und Seine Anwendung auf das Eiszeitenproblem (Canon of Insolation of the Earth and Its Application to the Ice-Age Problem). Royal Serbian Academy, 484 pp.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 2002: Twentieth century sea level: An enigma. Proc. Natl. Acad. Sci. USA, 99 , 65506555.

  • Munk, W., and D. E. Cartwright, 1966: Tidal spectroscopy and prediction. Philos. Trans. Roy. Soc. London, A259 , 533581.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Pettersson, O., 1930: The tidal force. Geogr. Ann., 12 , 261322.

  • Pinkel, R., and Coauthors, 2000: Ocean mixing studied near the Hawaiian Ridge. Eos, Trans. Amer. Geophys. Union, 81 , 545553.

  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr., 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Rubincam, D. P., 1994: Insolation in terms of the earth’s orbital parameters. Theor. Appl. Climatol., 48 , 195202.

  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51 , 30433068.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6 , 245263.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

  • Wunsch, C., 1984: Acoustic tomography and other answers. A Celebration in Geophysics and Oceanography—1982, in Honor of Walter Munk, SIO Reference Series 84-05, Scripps Institution of Oceanography, 47–62.

  • Wunsch, C., 2000: On sharp spectral lines in the climate record and the millennial peak. Paleoceanography, 15 , 417424.

  • Wunsch, C., 2002: The spectral description of climate change including the 100KY energy. Climate Dyn., 20 , 353363.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 0 0 0

Tides and the Climate: Some Speculations

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 Scripps Institution of Oceanography, La Jolla, California, and NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

The important role of tides in the mixing of the pelagic oceans has been established by recent experiments and analyses. The tide potential is modulated by long-period orbital modulations. Previously, Loder and Garrett found evidence for the 18.6-yr lunar nodal cycle in the sea surface temperatures of shallow seas. In this paper, the possible role of the 41 000-yr variation of the obliquity of the ecliptic is considered. The obliquity modulation of tidal mixing by a few percent and the associated modulation in the meridional overturning circulation (MOC) may play a role comparable to the obliquity modulation of the incoming solar radiation (insolation), a cornerstone of the Milanković theory of ice ages. This speculation involves even more than the usual number of uncertainties found in climate speculations.

Corresponding author address: Dr. Walter Munk, Scripps Institution of Oceanography, 9500 Gilman Dr., Mail Code 0225, La Jolla, CA 92093-0225. Email: wmunk@ucsd.edu

This article included in the In Honor of Carl Wunsch special collection.

Abstract

The important role of tides in the mixing of the pelagic oceans has been established by recent experiments and analyses. The tide potential is modulated by long-period orbital modulations. Previously, Loder and Garrett found evidence for the 18.6-yr lunar nodal cycle in the sea surface temperatures of shallow seas. In this paper, the possible role of the 41 000-yr variation of the obliquity of the ecliptic is considered. The obliquity modulation of tidal mixing by a few percent and the associated modulation in the meridional overturning circulation (MOC) may play a role comparable to the obliquity modulation of the incoming solar radiation (insolation), a cornerstone of the Milanković theory of ice ages. This speculation involves even more than the usual number of uncertainties found in climate speculations.

Corresponding author address: Dr. Walter Munk, Scripps Institution of Oceanography, 9500 Gilman Dr., Mail Code 0225, La Jolla, CA 92093-0225. Email: wmunk@ucsd.edu

This article included in the In Honor of Carl Wunsch special collection.

Save