• Bradford-Grieve, J., M. Livingston, P. Sutton, and M. Hadfield, 2004: Ocean variability and hoki decline. Water and Atmosphere, 12 , 4, NIWA Science, Wellington, New Zealand. 2021.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1975: A technique for objective analysis and design of oceanographic experiments. Deep-Sea Res., 23 , 559582.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures. CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.

  • Curry, R., and M. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31 , 33743400.

    • Search Google Scholar
    • Export Citation
  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426 , 826829.

    • Search Google Scholar
    • Export Citation
  • Davis, R., 1998: Preliminary results from measuring middepth circulation in the tropical and South Pacific. J. Geophys. Res., 103 , 2461924639.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35 , 683707.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P-Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15 , 30433057.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kushner, P., I. Held, and T. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2002: Trends in Antarctic geopotential height and temperature: A comparison between radiosonde and NCEP–NCAR reanalysis data. J. Climate, 15 , 659674.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16 , 41344143.

  • Qiu, B., and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36 , 17511762.

    • Search Google Scholar
    • Export Citation
  • Reid, J., 1986: On the total geostrophic circulation of the South Pacific Ocean: Flow patterns, tracers, and transports. Progress in Oceanography, 16 , Pergamon,. 161.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2004: Trends in the Southern Hemisphere polar vortex in NCEP and ECMWF reanalyses. Geophys. Res. Lett., 31 .L07209, doi:10.1029/2003GL019302.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31 .L18209, doi:10.1029/2004GL020724.

    • Search Google Scholar
    • Export Citation
  • Sutton, P., M. Bowen, and D. Roemmich, 2005: Decadal temperature changes in the Tasman Sea. N. Z. J. Mar. Freshwater Res., 39 , 13211329.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 2004: Comments on “Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode.”. J. Climate, 17 , 22492254.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109 .C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. Bindoff, and J. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400 , 440443.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. Bindoff, and J. Church, 2001: Freshwater and heat changes in the North and South Pacific Oceans between the 1960s and 1985–94. J. Climate, 14 , 16131633.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., G. C. Johnson, and W. B. Owens, 2003: Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology. J. Atmos. Oceanic Technol., 20 , 308318.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 2 2 2

Decadal Spinup of the South Pacific Subtropical Gyre

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 National Institute of Water and Atmospheric Research, Wellington, New Zealand
  • | 3 CSIRO Marine Research, Hobart, Tasmania, Australia
  • | 4 School of Oceanography, University of Washington, Seattle, Washington
Restricted access

Abstract

An increase in the circulation of the South Pacific Ocean subtropical gyre, extending from the sea surface to middepth, is observed over 12 years. Datasets used to quantify the decadal gyre spinup include satellite altimetric height, the World Ocean Circulation Experiment (WOCE) hydrographic and float survey of the South Pacific, a repeated hydrographic transect along 170°W, and profiling float data from the global Argo array. The signal in sea surface height is a 12-cm increase between 1993 and 2004, on large spatial scale centered at about 40°S, 170°W. The subsurface datasets show that this signal is predominantly due to density variations in the water column, that is, to deepening of isopycnal surfaces, extending to depths of at least 1800 m. The maximum increase in dynamic height is collocated with the deep center of the subtropical gyre, and the signal represents an increase in the total counterclockwise geostrophic circulation of the gyre, by at least 20% at 1000 m. A comparison of WOCE and Argo float trajectories at 1000 m confirms the gyre spinup during the 1990s. The signals in sea surface height, dynamic height, and velocity all peaked around 2003 and subsequently began to decline. The 1990s increase in wind-driven circulation resulted from decadal intensification of wind stress curl east of New Zealand—variability associated with an increase in the atmosphere’s Southern Hemisphere annular mode. It is suggested (based on altimetric height) that midlatitude gyres in all of the oceans have been affected by variability in the atmospheric annular modes on decadal time scales.

Corresponding author address: Dean Roemmich, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0230. Email: droemmich@ucsd.edu

This article included in the In Honor of Carl Wunsch special collection.

Abstract

An increase in the circulation of the South Pacific Ocean subtropical gyre, extending from the sea surface to middepth, is observed over 12 years. Datasets used to quantify the decadal gyre spinup include satellite altimetric height, the World Ocean Circulation Experiment (WOCE) hydrographic and float survey of the South Pacific, a repeated hydrographic transect along 170°W, and profiling float data from the global Argo array. The signal in sea surface height is a 12-cm increase between 1993 and 2004, on large spatial scale centered at about 40°S, 170°W. The subsurface datasets show that this signal is predominantly due to density variations in the water column, that is, to deepening of isopycnal surfaces, extending to depths of at least 1800 m. The maximum increase in dynamic height is collocated with the deep center of the subtropical gyre, and the signal represents an increase in the total counterclockwise geostrophic circulation of the gyre, by at least 20% at 1000 m. A comparison of WOCE and Argo float trajectories at 1000 m confirms the gyre spinup during the 1990s. The signals in sea surface height, dynamic height, and velocity all peaked around 2003 and subsequently began to decline. The 1990s increase in wind-driven circulation resulted from decadal intensification of wind stress curl east of New Zealand—variability associated with an increase in the atmosphere’s Southern Hemisphere annular mode. It is suggested (based on altimetric height) that midlatitude gyres in all of the oceans have been affected by variability in the atmospheric annular modes on decadal time scales.

Corresponding author address: Dean Roemmich, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0230. Email: droemmich@ucsd.edu

This article included in the In Honor of Carl Wunsch special collection.

Save