• Aoki, S., 2002: Coherent sea level response to the Antarctic Oscillation. Geophys. Res. Lett., 29 .1950, doi:10.1029/2002GL015733.

  • Bettadpur, S., 2004: Level-2 gravity field product user handbook. GRACE 327– 734, University of Texas, Austin, TX, 17 pp.

  • Cazenave, A., F. Mercier, F. Bouille, and J-M. Lemoine, 1999: Global-scale interactions between the solid Earth and its fluid envelopes at the seasonal time scale. Earth Planet. Sci. Lett., 171 , 549559.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., 2006: Observing seasonal steric sea level variations with GRACE and satellite altimetry. J. Geophys. Res., 111 .C03010, doi:10.1029/2005JC002914.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., J. Wahr, and R. S. Nerem, 2004: Preliminary observations of global ocean mass variations with GRACE. Geophys. Res. Lett., 31 .L13310, doi:10.1029/2004GL020461.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1982: Statistical reliability and the seasonal cycle—Comments on “Bottom pressure measurements across the Antarctic Circumpolar Current and their relation to the wind.”. Deep-Sea Res., 29A , 13811388.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. H. Freilich, 2005: Scatterometer-based assessment of 10-m wind analyses from operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133 , 409429.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., and B. D. Tapley, 2004: Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res., 109 .B09402, doi:10.1029/2004JB003028.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108 .8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Desai, S. D., 2002: Observing the pole tide with satellite altimetry. J. Geophys. Res., 107 .3186, doi:10.1029/2001JC001224.

  • Farrell, W. E., 1972: Deformation of the Earth by surface loads. Rev. Geophys. Space Phys., 10 , 761797.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., D. P. Stevens, R. T. Tokmakian, and K. J. Heywood, 2001: Antarctic Circumpolar Current response to zonally averaged winds. J. Geophys. Res., 106 , 27432759.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., Y. Lu, and Y. Cai, 2001: Relaxing the Boussinesq approximation in ocean circulation models. J. Atmos. Oceanic Technol., 18 , 19111923.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15 , 30433057.

    • Search Google Scholar
    • Export Citation
  • Han, S-C., C. Jekeli, and C. K. Shum, 2004: Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophys. Res., 109 .B04403, doi:10.1029/2003JB002501.

    • Search Google Scholar
    • Export Citation
  • Han, S-C., C-K. Shum, C. Jekeli, C. Y. Kuo, C. Wilson, and K. W. Seo, 2005: Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys. J. Int., 163 , 1825.

    • Search Google Scholar
    • Export Citation
  • Heiskanen, W. A., and H. Moritz, 1967: Physical Geodesy. W. H. Freeman and Co., 364 pp.

  • Hughes, C. W., M. P. Meredith, and K. J. Heywood, 1999: Wind-driven transport fluctuations through Drake Passage: A southern mode. J. Phys. Oceanogr., 29 , 19711992.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and Coauthors, 2003: Coherence of Antarctic sea levels, Southern Hemisphere annular mode, and flow through Drake Passage. Geophys. Res. Lett., 30 .1464, doi:10.1029/2003GL017240.

    • Search Google Scholar
    • Export Citation
  • Jekeli, C., 1981: Alternative methods to smooth the Earth’s gravity field. Geodetic Science and Survey Rep. 327, The Ohio State University, Columbus, OH, 48 pp.

  • Johnson, T. J., C. R. Wilson, and B. F. Chao, 2001: Non tidal oceanic contributions to gravitational field changes: Predictions of the Parallel Ocean Climate Model. J. Geophys. Res., 106 , 1131511334.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., F. Flechtner, A. Chave, R. Schmidt, P. Schwintzer, and U. Send, 2005: Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns. J. Geophys. Res., 110 .C09001, doi:10.1029/2004JC002772.

    • Search Google Scholar
    • Export Citation
  • Kim, S-B., T. Lee, and I. Fukumori, 2004: The 1997–1999 abrupt change of the upper ocean temperature in the north central Pacific. Geophys. Res. Lett., 31 .L22304, doi:10.1029/2004GL021142.

    • Search Google Scholar
    • Export Citation
  • Knudsen, P., 2003: Ocean tides in GRACE monthly-averaged gravity fields. Space Sci. Rev., 108 , 261270.

  • Macdonald, A., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382 , 436439.

  • Marshall, J. C., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and C. W. Hughes, 2004: On the wind-forcing of bottom pressure variability at Amsterdam and Kerguelen Islands, southern Indian Ocean. J. Geophys. Res., 109 .C03012, doi:10.1029/2003JC002060.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., J. M. Vassie, K. J. Heywood, and R. Spencer, 1996: On the temporal variability of the transport through Drake Passage. J. Geophys. Res., 101 , 2248522494.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., P. L. Woodworth, C. W. Hughes, and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett., 31 .L21305, doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • Minster, J. F., A. Cazenave, and P. Rogel, 1999: Annual cycle in mean sea level from Topex-Poseidon and ERS-1: Inference on the global hydrological cycle. Global Planet. Change, 20 , 5766.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3 , 5355.

  • Olbers, D., D. Borowski, C. Völker, and J-O. Wölff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16 .439-470, doi:10.1017/S0954102004002251.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Parker, R. L., 1975: Theory of ideal bodies for gravity interpretation. Geophys. J. Roy. Astron. Soc., 42 , 315334.

  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32 , 111149.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., 1988: On the transport of the Antarctic Circumpolar Current through Drake Passage and its relation to wind. J. Geophys. Res., 93 , 1399314004.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and S. Sokolov, 2001: Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). J. Geophys. Res., 106 , 28152832.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., S. Sokolov, and J. Church, 2002: A 6 year record of baroclinic transport variability of the Antarctic Circumpolar Current at 140_E derived from expendable bathythermograph and altimeter measurements. J. Geophys. Res., 107 .C103155, doi:10.1029/2001JC000787.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea-surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , 1546715472.

    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and V. Zlotnicki, 2004: Ocean BP waves predicted in the tropical Pacific. Geophys. Res. Lett., 31 .L05306, doi:10.1029/2003GL018980.

    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and T. Y. Hou, 2006: Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling. Ocean Modell., 11 , 298232.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., 2003: Seasonal to interannual upper-ocean variability in the Drake Passage. J. Mar. Res., 61 , 2757.

  • Swenson, S., and J. Wahr, 2002a: Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. J. Geophys. Res., 107 .2194, doi:10.1029/2001JB000515.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2002b: Methods for inferring regional surface-mass anomalies from satellite measurements of time variable gravity. J. Geophys. Res., 107 .2193, doi:10.1029/2001JB000576.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33 .L08402, doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31 .L09607, doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895898.

  • Velicogna, I., and J. Wahr, 2006: Measurements of time-variable gravity show mass loss in Antarctica. Science, 311 , 17541756.

  • Wahr, J., M. Molenaar, and F. Bryan, 1998: Time-variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103 , 205230.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31 .L11501, doi:10.1029/2004GL019779.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., S. Swenson, and I. Velicogna, 2006: Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33 .L06401, doi:10.1029/2005GL025305.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and R. X. Huang, 2004: Wind energy input to the surface waves. J. Phys. Oceanogr., 34 , 12761280.

  • Wearn, R. B., and D. J. Baker, 1980: Bottom pressure measurements across the Antarctic Circumpolar Current and their relation to wind. Deep-Sea Res., 27A , 875888.

    • Search Google Scholar
    • Export Citation
  • Whitworth III, T., and R. G. Peterson, 1985: Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J. Phys. Oceanogr., 15 , 810816.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., J. M. Vassie, C. W. Hughes, and M. P. Meredith, 1996: A test of the ability of TOPEX/POSEIDON to monitor flows through the Drake Passage. J. Geophys. Res., 101 , 1193511947.

    • Search Google Scholar
    • Export Citation
  • Wu, X., D. F. Argus, M. B. Heflin, E. R. Ivins, and F. H. Webb, 2002: Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys. Res. Lett., 29 .2210, doi:10.1029/2002GL016324.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28 , 23322340.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 4 4 4

Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Cooperative Institute for Research in Environmental Sciences, and Department of Physics, University of Colorado, Boulder, Colorado
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Gravity Recovery and Climate Experiment (GRACE) gravity data spanning January 2003–November 2005 are used as proxies for ocean bottom pressure (BP) averaged over 1 month, spherical Gaussian caps 500 km in radius, and along paths bracketing the Antarctic Circumpolar Current’s various fronts. The GRACE BP signals are compared with those derived from the Estimating the Circulation and Climate of the Ocean (ECCO) ocean modeling–assimilation system, and to a non-Boussinesq version of the Regional Ocean Model System (ROMS). The discrepancy found between GRACE and the models is 1.7 cmH2O (1 cmH2O ∼ 1 hPa), slightly lower than the 1.9 cmH2O estimated by the authors independently from propagation of GRACE errors. The northern signals are weak and uncorrelated among basins. The southern signals are strong, with a common seasonality. The seasonal cycle GRACE data observed in the Pacific and Indian Ocean sectors of the ACC are consistent, with annual and semiannual amplitudes of 3.6 and 0.6 cmH2O (1.1 and 0.6 cmH2O with ECCO), the average over the full southern path peaks (stronger ACC) in the southern winter, on days of year 197 and 97 for the annual and semiannual components, respectively; the Atlantic Ocean annual peak is 20 days earlier. An approximate conversion factor of 3.1 Sv (Sv ≡ 106 m3 s−1) of barotropic transport variability per cmH2O of BP change is estimated. Wind stress data time series from the Quick Scatterometer (QuikSCAT), averaged monthly, zonally, and over the latitude band 40°–65°S, are also constructed and subsampled at the same months as with the GRACE data. The annual and semiannual harmonics of the wind stress peak on days 198 and 82, respectively. A decreasing trend over the 3 yr is observed in the three data types.

Corresponding author address: Victor Zlotnicki, JPL 300-323, 4800 Oak Grove Dr., Pasadena, CA 91109. Email: victor.zlotnicki@jpl.nasa.gov

This article included in the In Honor of Carl Wunsch special collection.

Abstract

Gravity Recovery and Climate Experiment (GRACE) gravity data spanning January 2003–November 2005 are used as proxies for ocean bottom pressure (BP) averaged over 1 month, spherical Gaussian caps 500 km in radius, and along paths bracketing the Antarctic Circumpolar Current’s various fronts. The GRACE BP signals are compared with those derived from the Estimating the Circulation and Climate of the Ocean (ECCO) ocean modeling–assimilation system, and to a non-Boussinesq version of the Regional Ocean Model System (ROMS). The discrepancy found between GRACE and the models is 1.7 cmH2O (1 cmH2O ∼ 1 hPa), slightly lower than the 1.9 cmH2O estimated by the authors independently from propagation of GRACE errors. The northern signals are weak and uncorrelated among basins. The southern signals are strong, with a common seasonality. The seasonal cycle GRACE data observed in the Pacific and Indian Ocean sectors of the ACC are consistent, with annual and semiannual amplitudes of 3.6 and 0.6 cmH2O (1.1 and 0.6 cmH2O with ECCO), the average over the full southern path peaks (stronger ACC) in the southern winter, on days of year 197 and 97 for the annual and semiannual components, respectively; the Atlantic Ocean annual peak is 20 days earlier. An approximate conversion factor of 3.1 Sv (Sv ≡ 106 m3 s−1) of barotropic transport variability per cmH2O of BP change is estimated. Wind stress data time series from the Quick Scatterometer (QuikSCAT), averaged monthly, zonally, and over the latitude band 40°–65°S, are also constructed and subsampled at the same months as with the GRACE data. The annual and semiannual harmonics of the wind stress peak on days 198 and 82, respectively. A decreasing trend over the 3 yr is observed in the three data types.

Corresponding author address: Victor Zlotnicki, JPL 300-323, 4800 Oak Grove Dr., Pasadena, CA 91109. Email: victor.zlotnicki@jpl.nasa.gov

This article included in the In Honor of Carl Wunsch special collection.

Save