• Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125 , 22932315.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., 2005: Atmospheric forcing of the oceanic semidiurnal tide. Geophys. Res. Lett., 32 .L02610, doi:10.1029/2004GL021668.

  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res., 51 , 30693101.

    • Search Google Scholar
    • Export Citation
  • Carrère, L., and F. Lyard, 2003: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing–comparisons with observations. Geophys. Res. Lett., 30 .1275, doi:10.1029/2002GL016473.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 , 775778.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., Y. Lu, and B. de Young, 1996: Application of a barotropic model to North Atlantic synoptic sea level variability. J. Mar. Res., 54 , 451469.

    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1972: The effects of solid earth deformations on global ocean tides. Geophys. J. Roy. Astron. Soc., 29 , 389402.

  • Hirose, N., I. Fukumori, V. Zlotnicki, and R. M. Ponte, 2001: High-frequency barotropic response to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J. Geophys. Res., 106 , 3098730996.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28 , 811814.

  • Köhl, A., D. Stammer, B. Cornuelle, E. Remy, Y. Lu, P. Heimbach, and C. Wunsch, 2003: The global 1° WOCE synthesis: 1992–2001. ECCO Report Series, Rep. 20, University of California, San Diego, La Jolla, California, 30 pp. [Available online at http://www.eccogroup.org/reports.html.].

  • Le Provost, C., 2001: Ocean tides. Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave, Eds., Academic Press, 267–303.

  • Longuet-Higgins, M. S., 1968: The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. Roy. Soc. London, 262A , 511607.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier–Stokes model for studies of ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic and non-hydrostatic ocean modeling. J. Geophys. Res., 102 , 57335752.

    • Search Google Scholar
    • Export Citation
  • Nam, S. H., S. J. Lyu, Y. H. Kim, K. Kim, J. Park, and D. R. Watts, 2004: Correction of TOPEX/POSEIDON altimeter data for nonisostatic sea level response to atmospheric pressure in the Japan/East Sea. Geophys. Res. Lett., 31 .L02304, doi:10.1029/2003GL018487.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Forced oceanic waves. Rev. Geophys. Space Phys., 16 , 1546.

  • Platzman, G. W., 1984: Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanogr., 14 , 15321550.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 1992: The sea level response of a stratified ocean to barometric pressure forcing. J. Phys. Oceanogr., 22 , 109113.

  • Ponte, R. M., 1993: Variability in a homogeneous global ocean forced by barometric pressure. Dyn. Atmos. Oceans, 18 , 209234.

  • Ponte, R. M., 1994: Understanding the relation between wind- and pressure-driven sea level variability. J. Geophys. Res., 99 , 80338039.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and P. Gaspar, 1999: Regional analysis of the inverted barometer effect over the global ocean using TOPEX/POSEIDON data and model results. J. Geophys. Res., 104 , 1558715601.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and R. D. Ray, 2002: Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett., 29 .2153, doi:10.1029/2002GL016340.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and N. Hirose, 2004: Propagating bottom pressure signals around Antarctica at 1–2-day periods and implications for ocean modes. J. Phys. Oceanogr., 34 , 284292.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23 , 21012104.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and R. M. Ponte, 2003: Barometric tides from ECMWF operational analyses. Ann. Geophys., 21 , 18971910.

  • Ray, R. D., and G. D. Egbert, 2004: The global S1 tide. J. Phys. Oceanogr., 34 , 19221935.

  • Shum, C-K., and Coauthors, 1997: Accuracy assessment of recent ocean tide models. J. Geophys. Res., 102 , 2517325194.

  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res., 51 , 30433068.

    • Search Google Scholar
    • Export Citation
  • Tierney, C., J. Wahr, F. Bryan, and V. Zlotnicki, 2000: Short-period oceanic circulation: Implications for satellite altimetry. Geophys. Res. Lett., 27 , 12551258.

    • Search Google Scholar
    • Export Citation
  • vanDam, T. M., and J. Wahr, 1993: The atmospheric load response of the ocean determined using GEOSAT altimeter data. Geophys. J. Int., 113 , 116.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., S. Saha, J. Schemm, and J. Huang, 1997: A temporal interpolation method to obtain hourly atmospheric surface pressure tides in Reanalysis 1979–1995. J. Geophys. Res., 102 , 2201322024.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., and B. A. de Cuevas, 2003: The region of large sea surface height variability in the southeast Pacific Ocean. J. Phys. Oceanogr., 33 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., S. G. H. Philander, and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10 , 411429.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Stammer, 1997: Atmospheric loading and the oceanic “inverted barometer” effect. Rev. Geophys., 35 , 79107.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 3 3 3

Effects of Stratification on the Large-Scale Ocean Response to Barometric Pressure

View More View Less
  • 1 Atmospheric and Environmental Research, Inc., Lexington, Massachusetts
Restricted access

Abstract

Single-layer (barotropic) models have been commonly used in studies of the inverted barometer effect and the oceanic response to atmospheric pressure loading. The potential effects of stratification on this response are explored here using a general circulation model in a near-global domain with realistic coasts and bathymetry. Periodic forcing by the diurnal and semidiurnal atmospheric tides and 6-hourly stochastic forcing from weather center analyses are both examined. A global dynamic response (i.e., departures from inverted barometer behavior) is clear in the response to atmospheric tides; for stochastic forcing, the largest dynamic signals occur in shallow and semienclosed regions and at mid- and high latitudes. The influence of stratification in the dynamics is assessed by comparing surface and bottom pressure signals. Baroclinic effects are generally weak, particularly in the response to the large-scale atmospheric tides. Under stochastic forcing, largest differences between surface and bottom pressure signals reach 10%–20% of the surface signals and tend to occur in regions of enhanced topographic gradients. Bottom-intensified, localized interactions with topography seem to be involved. Enhanced baroclinicity is also seen at low latitudes, where stratification effects are also felt in the upper ocean. General implications for modeling the ocean response to high-frequency atmospheric and tidal forcing are discussed.

Corresponding author address: Rui M. Ponte, AER, Inc., 131 Hartwell Ave., Lexington, MA 02421-3126. Email: ponte@aer.com

This article included in the In Honor of Carl Wunsch special collection.

Abstract

Single-layer (barotropic) models have been commonly used in studies of the inverted barometer effect and the oceanic response to atmospheric pressure loading. The potential effects of stratification on this response are explored here using a general circulation model in a near-global domain with realistic coasts and bathymetry. Periodic forcing by the diurnal and semidiurnal atmospheric tides and 6-hourly stochastic forcing from weather center analyses are both examined. A global dynamic response (i.e., departures from inverted barometer behavior) is clear in the response to atmospheric tides; for stochastic forcing, the largest dynamic signals occur in shallow and semienclosed regions and at mid- and high latitudes. The influence of stratification in the dynamics is assessed by comparing surface and bottom pressure signals. Baroclinic effects are generally weak, particularly in the response to the large-scale atmospheric tides. Under stochastic forcing, largest differences between surface and bottom pressure signals reach 10%–20% of the surface signals and tend to occur in regions of enhanced topographic gradients. Bottom-intensified, localized interactions with topography seem to be involved. Enhanced baroclinicity is also seen at low latitudes, where stratification effects are also felt in the upper ocean. General implications for modeling the ocean response to high-frequency atmospheric and tidal forcing are discussed.

Corresponding author address: Rui M. Ponte, AER, Inc., 131 Hartwell Ave., Lexington, MA 02421-3126. Email: ponte@aer.com

This article included in the In Honor of Carl Wunsch special collection.

Save