• Andrie, C., M. Rhein, S. Freudenthal, and O. Plaehn, 2002: CFC time series in the deep water masses of the western tropical Atlantic, 1990-1999. Deep-Sea Res. I, 49 , 281304.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Rhein, J. Dengg, and C. Dorow, 2003: Modeling CFC inventories and formation rates of Labrador Sea Water. Geophys. Res. Lett., 30 .1050, doi:10.1029/2002GL014855.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Broecker, W. S., and T-S. Peng, 1982: Tracers in the Sea. Lamont-Doherty Geological Observatory, 690 pp.

  • Broecker, W. S., and Coauthors, 1998: How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103 , 1583315843.

  • Bullister, J. L., and R. F. Weiss, 1983: Anthropogenic chlorofluoromethanes in the Greenland and Norwegian Seas. Science, 221 , 265268.

    • Search Google Scholar
    • Export Citation
  • Coles, V. J., M. S. McCartney, D. B. Olson, and W. M. Smethie, 1996: Changes in Antarctic Bottom Water properties in the western South Atlantic in the late 1980s. J. Geophys. Res., 101 , 89578970.

    • Search Google Scholar
    • Export Citation
  • de las Heras, M., and R. Schlitzer, 1999: On the importance of intermediate water flows for the global ocean overturning. J. Geophys. Res., 104 , 1551515536.

    • Search Google Scholar
    • Export Citation
  • Dutay, J-C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modell., 4 , 89102.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and E. Maier-Reimer, 2001: Using chemical tracers to assess ocean models. Rev. Geophys., 39 , 2970.

  • Fahrbach, E., S. Harms, G. Rohardt, M. Schröder, and R. A. Woodgate, 2001: Flow of bottom water in the northwestern Weddell Sea. J. Geophys. Res., 106 , 27612778.

    • Search Google Scholar
    • Export Citation
  • Feely, R. A., C. L. Sabine, R. Schlitzer, J. L. Bullister, S. Mecking, and D. Greeley, 2004: Oxygen utilization and organic carbon remineralization in the Pacific Ocean. J. Oceanogr., 60 , 4552.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., and J. Marotzke, 2003: Impact of 4D-variational assimilation of WOCE hydrography on the meridional circulation of the Indian Ocean. Deep-Sea Res. II, 50 , 20052021.

    • Search Google Scholar
    • Export Citation
  • Fiadeiro, M. E., 1982: Three-dimensional modeling of tracers in the deep Pacific Ocean: II. Radiocarbon and the circulation. J. Mar. Res., 40 , 537550.

    • Search Google Scholar
    • Export Citation
  • Fine, R. A., M. Rhein, and C. Andrie, 2002: Using a CFC effective age to estimate propagation and storage of climate anomalies in the deep western North Atlantic Ocean. Geophys. Res. Lett., 29 .2227, doi:10.1029/2002GL015618.

    • Search Google Scholar
    • Export Citation
  • Foldvik, A., and Coauthors, 2004: Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109 .C02015, doi:10.1029/2003JC002008.

    • Search Google Scholar
    • Export Citation
  • Fukasawa, M., H. Freeland, R. Perkin, T. Watanabe, H. Uchida, and A. Nishina, 2004: Bottom water warming in the North Pacific Ocean. Nature, 428 , 825827.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., C. Wunsch, J. Marotzke, and J. Toole, 2000: Meridional overturning and large-scale circulation of the Indian Ocean. J. Geophys. Res., 105 , 2611726134.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., E. L. McDonagh, D. P. Stevens, K. J. Heywood, and R. J. Sanders, 2002: On the export of Antarctic Bottom Water from the Weddell Sea. Deep-Sea Res. II, 49 , 47154742.

    • Search Google Scholar
    • Export Citation
  • Harwell, 1995: Harwell Subroutine Library. Release 12, Vol. 1, 681 pp.

  • Hestenes, M. R., 1975: Optimization Theory. John Wiley and Sons, 447 pp.

  • Hogg, N. G., 2001: Quantification of the deep circulation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 259–270.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., P. Biscaye, W. Gardner, and W. J. Schmitz Jr., 1982: On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 , (Suppl.). 231263.

    • Search Google Scholar
    • Export Citation
  • Kawabe, M., S. Fujio, and D. Yanagimoto, 2003: Deep-water circulation at low latitudes in the western North Pacific. Deep-Sea Res. I, 50 , 631656.

    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18 .GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., W. B. Owens, and R. E. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52 , 767785.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38 , 97110.

    • Search Google Scholar
    • Export Citation
  • Lupton, J., 1998: Hydrothermal helium plumes in the Pacific Ocean. J. Geophys. Res., 103 , 1585315868.

  • Mantyla, A. W., and J. L. Reid, 1995: On the origins of deep and bottom waters of the Indian Ocean. J. Geophys. Res., 100 , 24172439.

  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys. Space Phys., 37 , 164.

  • Matear, R. J., C. S. Wong, and L. Xie, 2003: Can CFCs be used to determine anthropogenic CO2? Global Biogeochem. Cycles, 17 .1013, doi:10.1029/2001GB001415.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., and Coauthors, 2004: Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett., 31 .L07303, doi:10.1029/2003GL018970.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1993: Crossing of the equator by the deep western boundary current in the western Atlantic Ocean. J. Phys. Oceanogr., 23 , 19531974.

    • Search Google Scholar
    • Export Citation
  • McDonagh, E. L., M. Arhan, and K. J. Heywood, 2002: On the circulation of bottom water in the region of the Vema Channel. Deep-Sea Res. I, 49 , 11191139.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. J. Watson, K. A. Van Scoy, and T. W. N. Haine, 2001: Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea. J. Geophys. Res., 106 , 28992919.

    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and Coauthors, 2001: Ocean CO2 sequestration efficiency from 3-D ocean model comparison. Greenhouse Gas Control Technologies, D. Williams et al., Eds., Elsevier Science, 469–474.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., W. M. Smethie, and J. L. Bullister, 2002: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res., 107 .3122, doi:10.1029/2001JC000976.

    • Search Google Scholar
    • Export Citation
  • Paillet, J., M. Arhan, and M. S. McCartney, 1998: Spreading of Labrador Sea Water in the eastern North Atlantic. J. Geophys. Res., 103 , 1022310239.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., 1992: The boundary currents in the western Argentine Basin. Deep-Sea Res., 39A , 623644.

  • Reid, J. L., 1997: On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Progress in Oceanography, Vol. 39, Pergamon, 263–352.

  • Rhein, M., and Coauthors, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32 , 648665.

  • Roemmich, D., S. Hautala, and D. Rudnick, 1996: Northward abyssal transport through the Samoan Passage and adjacent regions. J. Geophys. Res., 101 , 1403914055.

    • Search Google Scholar
    • Export Citation
  • Rubin, S. I., and R. M. Key, 2002: Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method. Global Biogeochem. Cycles, 16 .1105, doi:10.1029/2001GB001432.

    • Search Google Scholar
    • Export Citation
  • Rüth, C., R. Well, and W. Roether, 2000: Primordial 3He in South Atlantic deep waters from sources on the Mid-Atlantic Ridge. Deep-Sea Res. I, 47 , 10591075.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 1993: Determining the mean, large-scale circulation of the Atlantic with the adjoint method. J. Phys. Oceanogr., 23 , 19351952.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 1995: An adjoint model for the determination of the mean oceanic circulation, air-sea fluxes and mixing coefficients. Ber. zur Polarforschung 156, Alfred Wegener Institute, 103 pp.

  • Schlitzer, R., 2000: Applying the adjoint method for global biogeochemical modeling. Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr., Vol. 114, Amer. Geophys. Union, 107–124.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2002: Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite based estimates. Deep-Sea Res. II, 49 , 16231644.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2004: Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. J. Oceanogr., 60 , 5362.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., R. Usbeck, and G. Fischer, 2004: Inverse modeling of particulate organic carbon fluxes in the South Atlantic. The South Atlantic in the Late Quaternary—Reconstruction of Material Budget and Current Systems, G. Wefer, S. Mulitza, and V. Rathmeyer, Eds., Springer, 1–19.

    • Search Google Scholar
    • Export Citation
  • Schmitz Jr., W. J., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Schott, F. A., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep-water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34 , 817843.

    • Search Google Scholar
    • Export Citation
  • Smethie Jr., W. M., 1993: Tracing the thermohaline circulation in the western north Atlantic using chlorofluorocarbons. Progress in Oceanography Vol. 31 Pergamon, 51–99.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., and R. A. Fine, 2001: Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I, 48 , 189215.

    • Search Google Scholar
    • Export Citation
  • Smethie Jr., W. M., and S. S. Jacobs, 2005: Circulation and melting under the Ross Ice Shelf: Estimates from evolving CFC, salinity and temperature fields in the Ross Sea. Deep-Sea Res. I, 52 , 959978.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., R. A. Fine, A. Putzka, and E. P. Jones, 2000: Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res., 105 , 1429714323.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, A., Z. Top, P. Schlosser, R. Hohmann, M. Iskandarani, D. B. Olson, J. E. Lupton, and W. J. Jenkins, 2004: Mantle 3He distribution and deep circulation in the Indian Ocean. J. Geophys. Res., 109 .C06012, doi:10.1029/2003JC002028.

    • Search Google Scholar
    • Export Citation
  • Thacker, W. C., and R. B. Long, 1988: Fitting dynamics to data. J. Geophys. Res., 93 , 12271240.

  • Treguier, A. M., N. G. Hogg, M. Maltrud, K. Speer, and V. Thierry, 2003: The origin of deep zonal flows in the Brazil Basin. J. Phys. Oceanogr., 33 , 580599.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., H. Ridderinkhof, and W. P. M. de Ruijter, 2004: North Atlantic deep water in the south-western Indian Ocean. Deep-Sea Res. I, 51 , 755776.

    • Search Google Scholar
    • Export Citation
  • Walker, S. J., R. F. Weiss, and P. K. Salameh, 2000: Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride. J. Geophys. Res., 105 , 1428514296.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., and G. C. Johnson, 2002: The overflows across the Ninetyeast Ridge. Deep-Sea Res. II, 49 , 14231439.

  • Weiss, R. F., J. L. Bullister, R. H. Gammon, and M. J. Warner, 1985: Atmospheric chlorofluoromethanes in the deep equatorial Atlantic. Nature, 314 , 608610.

    • Search Google Scholar
    • Export Citation
  • Whitworth III, T., and W. D. Nowlin Jr., 1987: Water masses and currents of the Southern Ocean at the Greenwich meridian. J. Geophys. Res., 92 , 64626476.

    • Search Google Scholar
    • Export Citation
  • WMO, 2003: WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and Monitoring Project 47, WMO, 498 pp.

    • Search Google Scholar
    • Export Citation
  • WOCE Data Products Committee, 2002: WOCE global data, version 3.0. WOCE International Project Office Rep. 180102, DVD-ROM.

  • Wunsch, C., and B. Grant, 1982: Towards the general circulation of the north Atlantic Ocean. Progress in Oceanography, Vol. 11, Pergamon, 1–59.

  • Wunsch, C., D-X. Hu, and B. Grant, 1983: Mass, heat, salt and nutrient fluxes in the South Pacific Ocean. J. Phys. Oceanogr., 13 , 725753.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., G. Siedler, and B. Lenz, 1999: Antarctic bottom water flow through the Hunter Channel. J. Phys. Oceanogr., 29 , 27852801.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 0 0 0

Assimilation of Radiocarbon and Chlorofluorocarbon Data to Constrain Deep and Bottom Water Transports in the World Ocean

View More View Less
  • 1 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
Restricted access

Abstract

A coarse-resolution global model with time-invariant circulation is fitted to hydrographic and tracer data by means of the adjoint method. Radiocarbon and chlorofluorocarbon (CFC-11 and CFC-12) data are included to constrain deep and bottom water transport rates and spreading pathways as well as the strength of the global overturning circulation. It is shown that realistic global ocean distributions of hydrographic parameters and tracers can be obtained simultaneously. The model correctly reproduces the deep ocean radiocarbon field and the concentrations gradients between different basins. The spreading of CFC plumes in the deep and bottom waters is simulated in a realistic way, and the spatial extent as well as the temporal evolution of these plumes agrees well with observations. Radiocarbon and CFC observations place upper bounds on the northward transports of Antarctic Bottom Water (AABW) into the Pacific, Atlantic, and Indian Oceans. Long-term mean AABW transports larger than 5 Sv (Sv ≡ 106 m3 s−1) through the Vema and Hunter Channels in the South Atlantic and net AABW transports across 30°S into the Indian Ocean larger than 10 Sv are found to be incompatible with CFC data. The rates of equatorward deep and bottom water transports from the North Atlantic and Southern Ocean are of similar magnitude (15.7 Sv at 50°N and 17.9 Sv at 50°S). Deep and bottom water formation in the Southern Ocean occurs at multiple sites around the Antarctic continent and is not confined to the Weddell Sea. A CFC forecast based on the assumption of unchanged abyssal transports shows that by 2030 the entire deep west Atlantic exhibits CFC-11 concentrations larger than 0.1 pmol kg−1, while most of the deep Indian and Pacific Oceans remain CFC free. By 2020 the predicted CFC concentrations in the deep western boundary current (DWBC) in the North Atlantic exceed surface water concentrations and the vertical CFC gradients start to reverse.

Corresponding author address: Reiner Schlitzer, Alfred Wegener Institute, Columbusstrasse, D-27568 Bremerhaven, Germany. Email: rschlitzer@awi-bremerhaven.de

This article included in the In Honor of Carl Wunsch special collection.

Abstract

A coarse-resolution global model with time-invariant circulation is fitted to hydrographic and tracer data by means of the adjoint method. Radiocarbon and chlorofluorocarbon (CFC-11 and CFC-12) data are included to constrain deep and bottom water transport rates and spreading pathways as well as the strength of the global overturning circulation. It is shown that realistic global ocean distributions of hydrographic parameters and tracers can be obtained simultaneously. The model correctly reproduces the deep ocean radiocarbon field and the concentrations gradients between different basins. The spreading of CFC plumes in the deep and bottom waters is simulated in a realistic way, and the spatial extent as well as the temporal evolution of these plumes agrees well with observations. Radiocarbon and CFC observations place upper bounds on the northward transports of Antarctic Bottom Water (AABW) into the Pacific, Atlantic, and Indian Oceans. Long-term mean AABW transports larger than 5 Sv (Sv ≡ 106 m3 s−1) through the Vema and Hunter Channels in the South Atlantic and net AABW transports across 30°S into the Indian Ocean larger than 10 Sv are found to be incompatible with CFC data. The rates of equatorward deep and bottom water transports from the North Atlantic and Southern Ocean are of similar magnitude (15.7 Sv at 50°N and 17.9 Sv at 50°S). Deep and bottom water formation in the Southern Ocean occurs at multiple sites around the Antarctic continent and is not confined to the Weddell Sea. A CFC forecast based on the assumption of unchanged abyssal transports shows that by 2030 the entire deep west Atlantic exhibits CFC-11 concentrations larger than 0.1 pmol kg−1, while most of the deep Indian and Pacific Oceans remain CFC free. By 2020 the predicted CFC concentrations in the deep western boundary current (DWBC) in the North Atlantic exceed surface water concentrations and the vertical CFC gradients start to reverse.

Corresponding author address: Reiner Schlitzer, Alfred Wegener Institute, Columbusstrasse, D-27568 Bremerhaven, Germany. Email: rschlitzer@awi-bremerhaven.de

This article included in the In Honor of Carl Wunsch special collection.

Save