• Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics, Vol. 17, Academic Press, 173–265.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Bormans, M., and C. Garrett, 1989: The effects of nonrectangular cross section, friction, and barotropic fluctuations on the exchange through the Strait of Gibraltar. J. Phys. Oceanogr., 19 , 15431557.

    • Search Google Scholar
    • Export Citation
  • Bormans, M., C. Garrett, and K. R. Thompson, 1986: Seasonal variability of the surface inflow through the Strait of Gibraltar. Oceanol. Acta, 9 , 403414.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and S. Levitus, 1998: Objective analysis of temperature and salinity for the world ocean on a 1/4° grid. NOAA NESDIS Atlas 11, 62 pp.

  • Bryden, H. L., J. Candela, and T. H. Kinder, 1994: Exchange through the Strait of Gibraltar. Progress in Oceanography, 33 , Pergamon,. 201248.

    • Search Google Scholar
    • Export Citation
  • Candela, J., 1991: The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans, 15 , 267300.

  • Candela, J., 2001: Mediterranean Water and global circulation. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 419–429.

    • Search Google Scholar
    • Export Citation
  • Candela, J., C. D. Winant, and H. L. Bryden, 1989: Meteorologically forced subinertial flows through the Strait of Gibraltar. J. Geophys. Res., 94 , 1266712679.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., P. Bonnefond, F. Mercier, K. Dominh, and V. Toumazou, 2002: Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Global Planet. Change, 34 , 5986.

    • Search Google Scholar
    • Export Citation
  • Crépon, M., 1965: Influence de la pression atmosphérique sur le niveau moyen de la Méditerranée Occidentale et sur le flux à travers le détroit de Gibraltar. Cah. Océanogr., 17 , 1532.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1982: Circulation in the Coastal Ocean. D. Reidel, 279 pp.

  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. 1 , Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6,. 83.

    • Search Google Scholar
    • Export Citation
  • Dickey, J. O., S. L. Marcus, O. de Viron, and I. Fukumori, 2002: Recent Earth oblateness variations: Unraveling climate and postglacial rebound effects. Science, 298 , 19751977.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., R. C. Beardsley, and R. Limeburner, 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteor. Soc., 121 , 19031921.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and P. Gauzelin, 1999: Response of the Black Sea mean level to atmospheric pressure and wind forcing. J. Mar. Syst., 22 , 311327.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1986: Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J. Fluid Mech., 164 , 5376.

    • Search Google Scholar
    • Export Citation
  • Fu, L-L., 2004: Latitudinal and frequency characteristics of the westward propagation of large-scale oceanic variability. J. Phys. Oceanogr., 34 , 19071921.

    • Search Google Scholar
    • Export Citation
  • Fu, L-L., and G. Pihos, 1994: Determining the response of sea level to atmospheric pressure forcing using TOPEX/Poseidon data. J. Geophys. Res., 99 , 2463324642.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., R. Raghunath, and L. Fu, 1998: Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study. J. Geophys. Res., 103 , 54935512.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., T. Lee, B. Cheng, and D. Menemenlis, 2004: The origin, pathway, and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr., 34 , 582604.

    • Search Google Scholar
    • Export Citation
  • García Lafuente, J., J. Delgado, and F. Criado, 2002a: Inflow interruption by meteorological forcing in the Strait of Gibraltar. Geophys. Res. Lett., 29 .1914, doi:10.1029/2002GL015446.

    • Search Google Scholar
    • Export Citation
  • García Lafuente, J., E. A. Fanjul, J. M. Vargas, and A. W. Ratsimandresy, 2002b: Subinertial variability in the flow through the Strait of Gibraltar. J. Geophys. Res., 107 .3168, doi:10.1029/2001JC001104.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1983: Variable sea level and strait flows in the Mediterranean: A theoretical study of the response to meteorological forcing. Oceanol. Acta, 6 , 7987.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and F. Majaess, 1984: Nonisostatic response of sea level to atmospheric pressure in the eastern Mediterranean. J. Phys. Oceanogr., 14 , 656665.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., J. Akerley, and K. Thompson, 1989: Low-frequency fluctuations in the Strait of Gibraltar from MEDALPEX sea level data. J. Phys. Oceanogr., 19 , 16821696.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., M. Bormans, and K. Thompson, 1990a: Is the exchange through the Strait of Gibraltar maximal or submaximal. The Physical Oceanography of Sea Straits, L. J. Pratt, Ed., Kluwer Academic, 271–294.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Thompson, and W. Blanchard, 1990b: Sea-level flips. Science, 348 , 292.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gross, R. S., I. Fukumori, and D. Menemenlis, 2003: Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res., 108 .2370, doi:10.1029/2002JB002143.

    • Search Google Scholar
    • Export Citation
  • Gross, R. S., I. Fukumori, D. Menemenlis, and P. Gegout, 2004: Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J. Geophys. Res., 109 .B01406, doi:10.1029/2003JB002432.

    • Search Google Scholar
    • Export Citation
  • Junge, M. M., and T. W. N. Haine, 2001: Mechanisms of North Atlantic wintertime sea surface temperature anomalies. J. Climate, 14 , 45604572.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kim, S-B., T. Lee, and I. Fukumori, 2004: The 1997–1999 abrupt change of the upper ocean temperature in the north central Pacific. Geophys. Res. Lett., 31 .L22304, doi:10.1029/2004GL021142.

    • Search Google Scholar
    • Export Citation
  • Koopmans, L. H., 1974: The Spectral Analysis of Time Series. Academic Press, 366 pp.

  • Korres, G., N. Pinardi, and A. Lascaratos, 2000: The ocean response to low-frequency interannual atmospheric variability in the Mediterranean Sea. Part I: Sensitivity experiments and energy analysis. J. Climate, 13 , 705731.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Larnicol, G., P-Y. Le Traon, N. Ayoub, and P. De Mey, 1995: Mean sea level and surface circulation variability of the Mediterranean Sea from 2 years of TOPEX/ Poseidon altimetry. J. Geophys. Res., 100 , 2516325177.

    • Search Google Scholar
    • Export Citation
  • Leder, N., and M. Orlić, 2004: Fundamental Adriatic seiche recorded by current meters. Ann. Geophys., 22 , 14491469.

  • Lee, T., and I. Fukumori, 2003: Interannual to decadal variation of tropical–subtropical exchange in the Pacific Ocean: Boundary versus interior pycnocline transports. J. Climate, 16 , 40224042.

    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, D. Menemenlis, Z. Xing, and L-L. Fu, 2002: Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr., 32 , 14041429.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P-Y., and P. Gauzelin, 1997: Response of the Mediterranean mean sea level to atmospheric pressure forcing. J. Geophys. Res., 102 , 973984.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., R. Giering, K. Q. Zhang, D. Stammer, C. Hill, and T. Lee, 1999: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104 , 2952929547.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2007: Atlantic to Mediterranean sea level difference driven by winds near Gibraltar Strait. J. Phys. Oceanogr., 37 , 359376.

    • Search Google Scholar
    • Export Citation
  • NGDC, 1988: Digital relief of the surface of the Earth. Data Announcement 88-MGG-02, NOAA/National Geophysical Data Center, Boulder, CO.

  • POEM Group, 1992: General circulation of the eastern Mediterranean. Earth-Sci. Rev., 32 , 285309.

  • Ponte, R. M., D. A. Salstein, and R. D. Rosen, 1991: Sea level response to pressure forcing in a barotropic numerical model. J. Phys. Oceanogr., 21 , 10431057.

    • Search Google Scholar
    • Export Citation
  • Ross, T., C. Garrett, and P-Y. Le Traon, 2000: Western Mediterranean sea-level rise: Changing exchange flow through the Strait of Gibraltar. Geophys. Res. Lett., 27 , 29492952.

    • Search Google Scholar
    • Export Citation
  • Send, U., and B. Baschek, 2001: Intensive shipboard observations of the flow through the Strait of Gibraltar. J. Geophys. Res., 106 , 3101731032.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., C. Wunsch, I. Fukumori, and J. Marshall, 2002: State estimation in modern oceanographic research. Eos, Trans. Amer. Geophys. Union, 83 , 289294295.

    • Search Google Scholar
    • Export Citation
  • Wang, O., I. Fukumori, T. Lee, and B. Cheng, 2004a: On the cause of eastern equatorial Pacific Ocean T–S variations associated with El Niño. Geophys. Res. Lett., 31 .L15309, doi:10.1029/2004GL020188.

    • Search Google Scholar
    • Export Citation
  • Wang, O., I. Fukumori, T. Lee, and G. Johnson, 2004b: Eastern equatorial Pacific Ocean TS variations with El Niño. Geophys. Res. Lett., 31 .L04305, doi:10.1029/2003GL019087.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1972: Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Rev. Geophys. Space Phys., 10 , 149.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 4 4 4

A Near-Uniform Basin-Wide Sea Level Fluctuation of the Mediterranean Sea

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.

Corresponding author address: Ichiro Fukumori, Jet Propulsion Laboratory, California Institute of Technology, M/S 300-323, 4800 Oak Grove Dr., Pasadena, CA 91109. Email: fukumori@jpl.nasa.gov

This article included in the In Honor of Carl Wunsch special collection.

Abstract

A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.

Corresponding author address: Ichiro Fukumori, Jet Propulsion Laboratory, California Institute of Technology, M/S 300-323, 4800 Oak Grove Dr., Pasadena, CA 91109. Email: fukumori@jpl.nasa.gov

This article included in the In Honor of Carl Wunsch special collection.

Save