• Adkins, J. F., and E. A. Boyle, 1997: Changing atmospheric Δ14C and the record of deep water paleoventilation ages. Paleoceanography, 12 , 337344.

    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., K. McIntyre, and D. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298 , 17241725.

    • Search Google Scholar
    • Export Citation
  • Baehr, J., J. Hirschi, J. Beismann, and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62 , 283312.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., A. Björkström, K. Holmén, and B. Moore, 1987: On Inverse Methods for Combining Chemicals and Physical Oceanography Data: A Steady-State Analysis of the Atlantic Ocean. International Meteorological Institute in Stockholm, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Boyle, E., 1988: Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature, 331 , 5556.

  • Boyle, E., 1992: Cadmium and δ13C paleochemical ocean distributions during the stage2 glacial maximum. Annu. Rev. Earth Planet. Sci., 20 , 245287.

    • Search Google Scholar
    • Export Citation
  • Boyle, E., and L. Keigwin, 1987: Deep circulation of the North Atlantic over the last 20,000 years: Geochemical evidence. Science, 218 , 784787.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1979: A revised estimate for the radiocarbon age of North Atlantic deep water. J. Geophys. Res., 84 , 32183226.

  • Broecker, W. S., and T. H. Peng, 1982: Tracers in the Sea. Lamont-Doherty Earth Observatory, 690 pp.

  • Broecker, W. S., E. Clark, I. Hajdas, and G. Bonani, 2004: Glacial ventilation rates for the deep Pacific Ocean. Paleoceanography, 19 .PA2002, doi:10.1029/2003PA000974.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T., and D. Roemmich, 1991: A comparison of measured and wind-derived Ekman transport at 11°N in the Atlantic Ocean. J. Phys. Oceanogr., 21 , 869878.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of σCO2 in the western Atlantic Ocean. Paleoceanography, 20 .PA1017, doi:10.1029/2004PA001021.

    • Search Google Scholar
    • Export Citation
  • Curry, W. B., J-C. Duplessy, L. D. Labeyrie, and N. J. Shackleton, 1988: Changes in the distribution of δ13C of deepwater ΣCO2 between the last glaciation and the Holocene. Paleoceanography, 3 , 317341.

    • Search Google Scholar
    • Export Citation
  • Devore, J., 2000: Probability and Statistics for Engineering and the Sciences. Duxbury, 775 pp.

  • Duplessy, J-C., N. J. Shackleton, R. K. Matthews, W. Prell, W. F. Ruddiman, M. Caralp, and C. H. Hendy, 1984: 13C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation. Quat. Res., 21 , 225243.

    • Search Google Scholar
    • Export Citation
  • Duplessy, J-C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel, 1988: Deepwater source variations during the last climate cycle and their impact on the global deepwater circulation. Paleoceanography, 3 , 343360.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Error budget of inverse box models: The North Atlantic. J. Atmos. Oceanic Technol., 20 , 16411655.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2006: Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic δ18O observations and a geostrophic inverse model. Geochem. Geophys. Geosyst., 7 .Q11N07, doi:10.1029/2006GC001383.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., J. Baehr, J. Marotzke, J. Stark, S. Cunningham, and J. Beismann, 2003: A monitoring design for the Atlantic meridional overturning circulation. Geophys. Res. Lett., 30 .1413, doi:10.1029/2002GL016776.

    • Search Google Scholar
    • Export Citation
  • Keigwin, L. D., 2004: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography, 19 .PA4012, doi:10.1029/2004PA001029.

    • Search Google Scholar
    • Export Citation
  • Kroopnick, P. M., 1985: The distribution of 13C of TCO2 in the world oceans. Deep-Sea Res., 32 , 5784.

  • Legrand, P., 1995: What do paleo-geochemical tracers tell us about the deep ocean circulation during the last ice age? Ph.D. thesis, Massachusetts Institute of Technology, 194 pp.

  • Legrand, P., and C. Wunsch, 1995: Constraints from paleotracer data on the North-Atlantic circulation during the last glacial maximum. Paleoceanography, 10 , 10111045.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., 2001: Using ocean margin density to constrain ocean circulation and surface wind strength in the past. Geochem. Geophys. Geosyst., 2 .doi:10.1029/2001GC000208.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., W. Curry, and N. Slowey, 1999: A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography, 14 , 360373.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., W. Curry, D. W. Oppo, U. S. Ninneman, C. D. Charles, and J. Munson, 2006: Meridional overturning circulation in the South Atlantic at the Last Glacial Maximum. Geochem. Geophys. Geosyst., 7 .Q10N03, doi:10.1029/2005GC001226.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., R. Francois, T. Stocker, and F. Joos, 2000: Ocean thermohaline circulation and sedimentary Pa-231/Th-230 ratio. Paleoceanography, 15 , 625641.

    • Search Google Scholar
    • Export Citation
  • Marchitto, T. M., W. B. Curry, and D. W. Oppo, 1998: Millennial-scale changes in North Atlantic circulation since the last glaciation. Nature, 393 , 557561.

    • Search Google Scholar
    • Export Citation
  • Marchitto, T. M., D. W. Oppo, and W. Curry, 2002: Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean water in the glacial North Atlantic. Paleoceanography, 17 .1038, doi:10.1029/2000PA000598.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., J. Lynch-Stieglitz, and R. F. Anderson, 2001: Similar glacial and Holocene Southern Ocean hydrography. Paleoceanography, 16 , 445454.

    • Search Google Scholar
    • Export Citation
  • McCave, I., B. Manighetti, and N. A. S. Beveridge, 1995: Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature, 374 , 149152.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J-M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428 , 834837.

    • Search Google Scholar
    • Export Citation
  • Mercier, H., 1989: A study of the time averaged circulation in the western North Atlantic by simultaneous nonlinear inversion of hydrographic and current meter data. Deep-Sea Res., 36 , 297313.

    • Search Google Scholar
    • Export Citation
  • Mix, A. C., and R. Fairbanks, 1985: North Atlantic surface-ocean control of Pleistocene deep-ocean circulation. Earth Planet. Sci. Lett., 73 , 231243.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, 1999: Numerical Recipes in C. Cambridge University Press, 994 pp.

  • Sarnthein, M., K. Winn, S. J. A. Jung, J-C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen, 1994: Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9 , 209267.

    • Search Google Scholar
    • Export Citation
  • Sikes, E. L., C. R. Samson, T. P. Guilderson, and W. R. Howard, 2000: Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature, 405 , 555559.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., K. Dixon, and K. Bryan, 1989: Simulations of radiocarbon in a coarse-resolution world ocean model, 1, steady state prebomb distributions. J. Geophys. Res., 94 , 82178242.

    • Search Google Scholar
    • Export Citation
  • Winguth, A., D. Archer, E. Maier-Reimer, and U. Mikolajewicz, 2000: Paleonutrient data analysis of the glacial Atlantic using an adjoint ocean general circulation model. Inverse Methods in Global Biogeochemical Cycles.Geophys. Monogr., Vol. 114, Amer. Geophys. Union, 171–183.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1984: Acoustic tomography and other answers. A Celebration in Geophysics and Oceanography—1982; in Honor of Walter Munk on His 65th Birthday, October 19 1982, Scripps Institution of Oceanography Reference Series, Vol. 84, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 47–62.

  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Wunsch, C., 2002: Oceanic age and transient tracers: Analytical and numerical solutions. J. Geophys. Res., 107 .3048, doi:10.1029/2001JC000797.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2003: Determining the paleoceanographic circulations, with emphasis on the Last Glacial Maximum. Quat. Sci. Rev., 22 , 371385.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281313.

    • Search Google Scholar
    • Export Citation
  • Yu, E., R. Francois, and M. Bacon, 1996: Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379 , 689694.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1

Can Paleoceanographic Tracers Constrain Meridional Circulation Rates?

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Harvard University, Cambridge, Massachusetts
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.

* Current affiliation: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Corresponding author address: Peter Huybers, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138. Email: phuybers@fas.harvard.edu

This article included in the In Honor of Carl Wunsch special collection.

Abstract

The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.

* Current affiliation: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Corresponding author address: Peter Huybers, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138. Email: phuybers@fas.harvard.edu

This article included in the In Honor of Carl Wunsch special collection.

Save