• Abdalla, S., and J. Bidlot, 2002: Wind gustiness and air density effects and other key changes to wave model in CY25R1. ECMWF Research Department Tech. Rep. Memo. R60.9/SA/0273, 12 pp.

  • Abdalla, S., and L. Cavaleri, 2002: Effect of wind variability and variable air density on wave modelling. J. Geophys. Res., 107 .3080, doi:10.1029/2000JC000639.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33 , 12741298.

    • Search Google Scholar
    • Export Citation
  • Anctil, F., M. Donelan, W. Drennan, and H. Graber, 1994: Eddy-correlation measurements of air–sea fluxes from a discus buoy. J. Atmos. Oceanic Technol., 11 , 11441150.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., 2006: Quelles mesures pour la prévistion des états de mer en zone côtiere? Communications de Conf. l’Atelier Experimentation et Instrumentation, Brest, France, IFREMER and Cosponsors, 1–6. [Available online at http://www.ifremer.fr/aei2006/resume_long/T1S3/14-aei2006-55.pdf.].

  • Ardhuin, F., and T. H. C. Herbers, 2002: Bragg scattering of random surface gravity waves by irregular sea bed topography. J. Fluid Mech., 451 , 133.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and T. H. C. Herbers, 2005: Numerical and physical diffusion: Can wave prediction models resolve directional spread? J. Atmos. Oceanic Technol., 22 , 883892.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and A. D. Jenkins, 2005: On the effect of wind and turbulence on ocean swell. Proc. 15th Int. Polar and Offshore Engineering Conf., Vol. III, Seoul, South Korea, ISOPE, 429–434.

  • Ardhuin, F., and A. D. Jenkins, 2006: On the interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr., 36 , 551557.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and A. Le Boyer, 2006: Numerical modelling of sea states: Validation of spectral shapes (in French). Navigation, 54 , 5571.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, and W. C. O’Reilly, 2001: A hybrid Eulerian–Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J. Phys. Oceanogr., 31 , 14981516.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, P. F. Jessen, and W. C. O’Reilly, 2003a: Swell transformation across the continental shelf. Part II: Validation of a spectral energy balance equation. J. Phys. Oceanogr., 33 , 19401953.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., W. C. O’Reilly, T. H. C. Herbers, and P. F. Jessen, 2003b: Swell transformation across the continental shelf. Part I: Attenuation and directional broadening. J. Phys. Oceanogr., 33 , 19211939.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr., 24 , 15501570.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurement of ocean wave breaking probability. J. Phys. Oceanogr., 32 , 33643374.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and A. J. Sutherland, 1968: A note on an overshoot effect in wind-generated waves. J. Geophys. Res., 73 , 68796885.

  • Battjes, J. A., T. J. Zitman, and L. H. Holthuijsen, 1987: A reanalysis of the spectra observed in JONSWAP. J. Phys. Oceanogr., 17 , 12881295.

    • Search Google Scholar
    • Export Citation
  • Benoit, M., F. Marcos, and F. Becq, 1996: Development of a third generation shallow-water wave model with unstructured spatial meshing. Proc. 25th Int. Conf. on Coastal Engineering, Orlando, FL, ASCE, 465–478.

  • Bidlot, J., P. Janssen, and S. Abdalla, 2007: A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Rep. Memo. 509, 29 pp.

  • Booij, N., and L. Holthuijsen, 2002: The effects of swell and wave steepness on wave growth and depth-induced wave breaking. Proc. Seventh Int. Workshop on Wave Forecasting and Hindcasting, Banff, AB, Canada, Meteorological Service of Canada and Cosponsors.

  • Bottema, M., and G. Ph van Vledder, 2005: Evaluation of the SWAN wave model in slanting fetch conditions. Proc. Fifth Int. Symp. on Ocean Wave Measurement and Analysis, Madrid, Spain, ASCE, CD-ROM, P165.

  • Bouws, E., H. Günther, W. Rosenthal, and C. L. Vincent, 1985: Similarity of the wind wave spectrum in finite depth water. 1. Spectral form. J. Geophys. Res., 90 , 975986.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., and M. Y. Belevich, 1993: One-dimensional theory of the wave boundary layer. Bound.-Layer Meteor., 63 , 6596.

  • Chen, G., and S. E. Belcher, 2000: Effects of long waves on wind-generated waves. J. Phys. Oceanogr., 30 , 22462256.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27 , 210236.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1987: The effect of swell on the growth of wind waves. Johns Hopkins APL Technical Digest, Vol. 8, No. 1, 18–23.

  • Donelan, M. A., 2001: A nonlinear dissipation function due to wave breaking. Proc. ECMWF Workshop on Ocean Wave Forecasting, Reading, United Kingdom, ECMWF, 87–94.

  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A , 509562.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108 .8062, doi:10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., and K. C. Ewans, 1998: Worldwide measurement of directional wave spreading. J. Atmos. Oceanic Technol., 15 , 440469.

    • Search Google Scholar
    • Export Citation
  • Gelci, R., H. Cazalé, and J. Vassal, 1957: Prévision de la houle. La méthode des densités spectroangulaires. Bull. Inf. Comité Central Océanogr. Etude Côtes, 9 , 416435.

    • Search Google Scholar
    • Export Citation
  • Graber, H., E. Terray, M. Donelan, W. Drennan, J. V. Leer, and D. Peters, 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17 , 708720.

    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 1999: Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr., 29 , 16331648.

  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity wave spectrum, part 1: General theory. J. Fluid Mech., 12 , 481501.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1974: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor., 6 , 107127.

  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project. Dtsch. Hydrogr. Z., 8 , Suppl. A. 195.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., K. Hasselmann, J. Allender, and T. Barnett, 1985: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15 , 13781391.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., and R. T. Guza, 1990: Estimation of directional wave spectra from multicomponent observations. J. Phys. Oceanogr., 20 , 17031724.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., M. Orzech, S. Elgar, and R. T. Guza, 2003: Shoaling transformation of wave frequency-directional spectra. J. Geophys. Res., 108 .3013, doi:10.1029/2001JC001304.

    • Search Google Scholar
    • Export Citation
  • Herterich, K., and K. Hasselmann, 1980: A similarity relation for the non-linear energy transfer in a finite-depth gravity-wave spectrum. J. Fluid Mech., 97 , 215224.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 1983: Observations of the directional distribution of ocean wave energy. J. Phys. Oceanogr., 13 , 191207.

  • Hsu, T-W., S-H. Ou, and J-M. Liau, 2005: Hindcasting nearshore wind waves using a FEM code for SWAN. Coastal Eng., 52 , 177195.

  • Janssen, P., 1991: Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21 , 16311642.

  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Janssen, P., K. Hasselmann, S. Hasselmann, and G. J. Komen, 1994: Parameterization of source terms and the energy balance in a growing wind sea. Dynamics and Modelling of Ocean Waves, G. J. Komen, et al., Eds., Cambridge University Press, 215–238.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., J-R. Bidlot, S. Abdalla, and H. Hersbach, 2005: Progress in ocean wave forecasting at ECMWF. ECMWF Research Department Tech. Rep. Memo. 478, 29 pp.

  • Kahma, K. K., 1981: A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr., 11 , 15031515.

  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22 , 13891405.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., 1962: Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process. Izv. Geophys. Ser. Acad. Sci., USSR, 1 , 105117.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., K. Hasselmann, and S. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14 , 12711285.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 554 pp.

    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., 2002: Second order wave spectra and heave/slope wave measurements. Proc. Fourth Int. Symp. on Ocean Wave Measurement and Analysis, San Francisco, CA, ASCE, 288–296.

  • Kudryavtsev, V. N., and V. K. Makin, 2004: Impact of swell on the marine atmospheric boundary layer. J. Phys. Oceanogr., 34 , 934949.

  • Kuik, A. J., G. Ph van Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18 , 10201034.

    • Search Google Scholar
    • Export Citation
  • Long, C. E., and J. Atmadja, 1994: Index and bulk parameters for frequency-direction spectra measured at CERC field research facility, September 1990 to August 1991. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, Tech. Rep. CERC-94-5, 245 pp.

  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16 , 20522060.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., and P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature, 417 , 5863.

  • O’Reilly, W. C., T. H. C. Herbers, R. J. Seymour, and R. T. Guza, 1996: A comparison of directional buoy and fixed platform measurements of Pacific swell. J. Atmos. Oceanic Technol., 13 , 231238.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., and B. Toulany, 1990: Fetch relations for wind-generated waves as a function of wind-stress scaling. J. Phys. Oceanogr., 20 , 16661681.

    • Search Google Scholar
    • Export Citation
  • Pettersson, H., 2004: Wave growth in a narrow bay. Ph.D. thesis, University of Helsinki, 33 pp. [Available online at http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/pettersson/.].

  • Pettersson, H., H. C. Graber, D. Hauser, C. Quentin, K. K. Kahma, W. M. Drennan, and M. A. Donelan, 2003: Directional wave measurements from three wave sensors during the FETCH experiment. J. Geophys. Res., 108 .8061, doi:10.1029/2001JC001164.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156 , 505531.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., and M. L. Banner, 1974: Wave breaking in the presence of wind drift and swell. J. Fluid Mech., 66 , 625640.

  • Pierson Jr., W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69 , 51815190.

    • Search Google Scholar
    • Export Citation
  • Polnikov, V. G., and L. Farina, 2002: On the problem of optimal approximation of the four-wave kinetic integral. Nonlinear Processes Geophys., 9 , 497512.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., 2002: An investigation into sources of error in low frequency energy predictions. Oceanography Division, Naval Research Laboratory, Stennis Space Center, Tech. Rep. Formal Rep. 7320-02-10035, 63 pp.

  • Rogers, W. E., P. A. Hwang, and D. W. Wang, 2003: Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr., 33 , 366389.

    • Search Google Scholar
    • Export Citation
  • Santala, M. J., and E. A. Terray, 1992: A technique for making unbiased estimates of current shear from a wave-follower. Deep-Sea Res., 39 , 607622.

    • Search Google Scholar
    • Export Citation
  • Seymour, R. J., 1977: Estimating wave generation on restricted fetches. J. Waterw. Port Coastal Ocean Eng., 103 , 251264.

  • Snyder, R. L., F. W. Dobson, J. A. Elliot, and R. B. Long, 1981: Array measurement of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102 , 159.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2002a: User manual and system documentation of WAVEWATCH-III version 222. NOAA/NWS/NCEP/MMAB Tech. Rep. 222, 133 pp.

  • Tolman, H. L., 2002b: Validation of WAVEWATCH-III version 1.15. NOAA/NWS/NCEP/MMAB Tech. Rep. 213, 33 pp.

  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26 , 24972518.

  • Tracy, B. A., and D. T. Resio, 1982: Theory and calculation of the nonlinear energy transfer between sea waves in deep water. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, Tech. Rep. 11, 54 pp.

  • van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes, 2007: Saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Eng., 54 , 151170.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. Ph, 2006: The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models. Coastal Eng., 53 , 223242.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. P., and D. P. Hurdle, 2002: Performance of formulations for whitecapping in wave prediction models. Proc. OMAE.02 21st Int. Conf. on Offshore Mechanics and Artic Engineering, Document OMAE2002-28146, Oslo, Norway, AMSE, 1–9.

  • Walsh, E. J., D. W. Hancock III, D. E. Hines, R. N. Swift, and J. F. Scott, 1989: An observation of the directional wave spectrum evolution from shoreline to fully developed. J. Phys. Oceanogr., 19 , 12881295.

    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18 , 17751810.

  • Watts, K. P., 2003: Fetch-limited wind wave generation on the continental shelf. M.S. thesis, Oceanography Department, Naval Postgraduate School, 93 pp. [Available online at http://bosun.nps.edu/uhtbin/cgisirsi.exe/1Hphb2sE8E/x/169720010/123.].

  • Webb, D. J., 1978: Nonlinear transfer between sea waves. Deep-Sea Res., 25 , 279298.

  • Young, I. R., 1998: An experimental investigation of the role of atmospheric stability in wind wave growth. Coastal Eng., 34 , 2333.

  • Young, I. R., and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36 , 376394.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., L. A. Verhagen, and M. L. Banner, 1995: A note on the bimodal directional spreading of fetch-limited wind waves. J. Geophys. Res., 100 , 773778.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 503 244 15
PDF Downloads 376 196 10

Swell and Slanting-Fetch Effects on Wind Wave Growth

View More View Less
  • 1 Centre Militaire d’Océanographie, Service Hydrographique et Océanographique de la Marine, Brest, France
  • | 2 Department of Oceanography, Naval Postgraduate School, Monterey, California
  • | 3 Alkyon Hydraulic Consultancy and Research, Emmeloord, Netherlands
  • | 4 ERDC, U.S. Army Corps of Engineers, Vicksburg, Mississippi
  • | 5 Division of Applied Marine Physics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, Florida
Restricted access

Abstract

Wind-sea generation was observed during two experiments off the coast of North Carolina. One event with offshore winds of 9–11 m s−1 directed 20° from shore normal was observed with eight directional stations recording simultaneously and spanning a fetch from 4 to 83 km. An opposing swell of 1-m height and 10-s period was also present. The wind-sea part of the wave spectrum conforms to established growth curves for significant wave height and peak period, except at inner-shelf stations where a large alongshore wind-sea component was observed. At these short fetches, the mean wave direction θm was observed to change abruptly across the wind-sea spectral peak, from alongshore at lower frequencies to downwind at higher frequencies. Waves from another event with offshore winds of 6–14 m s−1 directed 20°–30° from shore normal were observed with two instrument arrays. A significant amount of low-frequency wave energy was observed to propagate alongshore from the region where the wind was strongest. These measurements are used to assess the performance of some widely used parameterizations in wave models. The modeled transition of θm across the wind-sea spectrum is smoother than that in the observations and is reproduced very differently by different parameterizations, giving insights into the appropriate level of dissipation. Calculations with the full Boltzmann integral of quartet wave–wave interactions reveal that the discrete interaction approximation parameterization for these interactions is reasonably accurate at the peak of the wind sea but overpredicts the directional spread at high frequencies. This error is well compensated by parameterizations of the wind input source term that have a narrow directional distribution. Observations also highlight deficiencies in some parameterizations of wave dissipation processes in mixed swell–wind-sea conditions.

** Current affiliation: Directorate of Oceanography and Meteorology, Royal Australian Navy, Sydney, Australia

Corresponding author address: Fabrice Ardhuin, Centre Militaire d’Océanographie, Service Hydrographique et Océanographique de la Marine, 29609 Brest, France. Email: ardhuin@shom.fr

Abstract

Wind-sea generation was observed during two experiments off the coast of North Carolina. One event with offshore winds of 9–11 m s−1 directed 20° from shore normal was observed with eight directional stations recording simultaneously and spanning a fetch from 4 to 83 km. An opposing swell of 1-m height and 10-s period was also present. The wind-sea part of the wave spectrum conforms to established growth curves for significant wave height and peak period, except at inner-shelf stations where a large alongshore wind-sea component was observed. At these short fetches, the mean wave direction θm was observed to change abruptly across the wind-sea spectral peak, from alongshore at lower frequencies to downwind at higher frequencies. Waves from another event with offshore winds of 6–14 m s−1 directed 20°–30° from shore normal were observed with two instrument arrays. A significant amount of low-frequency wave energy was observed to propagate alongshore from the region where the wind was strongest. These measurements are used to assess the performance of some widely used parameterizations in wave models. The modeled transition of θm across the wind-sea spectrum is smoother than that in the observations and is reproduced very differently by different parameterizations, giving insights into the appropriate level of dissipation. Calculations with the full Boltzmann integral of quartet wave–wave interactions reveal that the discrete interaction approximation parameterization for these interactions is reasonably accurate at the peak of the wind sea but overpredicts the directional spread at high frequencies. This error is well compensated by parameterizations of the wind input source term that have a narrow directional distribution. Observations also highlight deficiencies in some parameterizations of wave dissipation processes in mixed swell–wind-sea conditions.

** Current affiliation: Directorate of Oceanography and Meteorology, Royal Australian Navy, Sydney, Australia

Corresponding author address: Fabrice Ardhuin, Centre Militaire d’Océanographie, Service Hydrographique et Océanographique de la Marine, 29609 Brest, France. Email: ardhuin@shom.fr

Save