Ventilation and Transformation of Labrador Sea Water and Its Rapid Export in the Deep Labrador Current

Peter Brandt IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Peter Brandt in
Current site
Google Scholar
PubMed
Close
,
Andreas Funk IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Andreas Funk in
Current site
Google Scholar
PubMed
Close
,
Lars Czeschel IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Lars Czeschel in
Current site
Google Scholar
PubMed
Close
,
Carsten Eden IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
, and
Claus W. Böning IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by Claus W. Böning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC.

Corresponding author address: Peter Brandt, IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: pbrandt@ifm-geomar.de

Abstract

A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC.

Corresponding author address: Peter Brandt, IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: pbrandt@ifm-geomar.de

Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17 , 173265.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific equatorial undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27 , 10381053.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., F. O. Bryan, W. R. Holland, and R. Döscher, 1996: Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 26 , 11421164.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and S. Levitus, 1997: Objective Analysis of Temperature and Salinity for the World Ocean on a ¼ Degree Grid. NOAA Atlas NESDIS 11, 62 pp.

  • Brandt, P., F. A. Schott, A. Funk, and C. S. Martins, 2004: Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry. J. Geophys. Res., 109 .C02028, doi:10.1029/2002JC001551.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, F. Schott, and J. Lazier, 2005: Convection above the Labrador continental slope. J. Phys. Oceanogr., 35 , 489511.

    • Search Google Scholar
    • Export Citation
  • Czeschel, L., 2004: The role of eddies for the deep water formation in the Labrador Sea. Ph.D. thesis, Leibniz-Institut für Meereswissenschaften an der Universität Kiel, 95 pp.

  • Döös, K., 1995: Interocean exchange of water masses. J. Geophys. Res., 100 , 1349913514.

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32 , 33463363.

  • Emery, W. J., P. Brandt, A. Funk, and C. Böning, 2006: A comparison of sea surface temperatures from microwave remote sensing of the Labrador Sea with in situ measurements and model simulations. J. Geophys. Res., 111 .C12013, doi:10.1029/2006JC003578.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and F. A. Schott, 2002: Labrador Sea Water tracked by profiling floats—From the boundary current into the open North Atlantic. J. Phys. Oceanogr., 32 , 573584.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., F. A. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34 , 15481570.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., P. Schlosser, and M. Visbeck, 2002: Rates and mechanisms of water mass transformation in the Labrador Sea as inferred from tracer observations. J. Phys. Oceanogr., 32 , 666686.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., M. Rhein, L. Stramma, W. M. Smethie, D. A. LeBel, and W. Zenk, 2006: Changes in the CFC inventories and formation rates of upper Labrador sea water, 1997–2001. J. Phys. Oceanogr., 36 , 6486.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407 , 6669.

    • Search Google Scholar
    • Export Citation
  • Lazier, J. R. N., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res., 49A , 18191835.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. d’Asaro, 2003: Observations of the Labrador Sea eddy field. Progress in Oceanography, Vol. 59, Pergamon Press, 75–176.

  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13 , 32393260.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37 , 164.

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21 , 251269.

  • Pacanowski, R. C., 1995: MOM 2 documentation: Users and reference manual. GFDL Ocean Group Tech. Rep. 3, 232 pp.

  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res., 44 , 10251054.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32 , 428457.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1993: A fast and complete convection scheme for ocean models. Ocean Modell., 101 , 911.

  • Rhein, M., J. Fischer, W. M. Smethie, D. Smythe-Wright, C. Mertens, D-H. Min, U. Fleischmann, and A. Putzka, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32 , 648665.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep-water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34 , 817843.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., and R. A. Fine, 2001: Rates of North Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res., 48 , 189215.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34 , 11971213.

  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31 , 810826.

  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22 , 93104.

  • Stevens, D. P., 1991: The open boundary condition in the United Kingdom Fine-Resolution Antarctic Model. J. Phys. Oceanogr., 21 , 14941499.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., D. Kieke, M. Rhein, F. A. Schott, I. Yashayaev, and K. P. Koltermann, 2004: Recent deep water changes at the western boundary of the subpolar North Atlantic. Deep-Sea Res., 51 , 10331056.

    • Search Google Scholar
    • Export Citation
  • Sy, A., M. Rhein, J. Lazier, K. P. Koltermann, J. Meincke, A. Putzka, and M. Bersch, 1997: Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean. Nature, 386 , 675679.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., S. Theetten, E. P. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35 , 757774.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1961 1565 61
PDF Downloads 339 82 8