• Antonov, J., , S. Levitus, , T. P. Boyer, , M. Conkright, , T. O’Brien, , and C. Stephens, 1998a: Temperature of the Atlantic Ocean. Vol. 1, World Ocean Atlas 1998, NOAA Atlas NESDIS 27, 166 pp.

  • Antonov, J., , S. Levitus, , T. P. Boyer, , M. Conkright, , T. O’Brien, , and C. Stephens, 1998b: Temperature of the Pacific Ocean. Vol. 2, World Ocean Atlas 1998, NOAA Atlas NESDIS 28, 166 pp.

  • Antonov, J., , S. Levitus, , T. P. Boyer, , M. Conkright, , T. O’Brien, , C. Stephens, , and B. Trotsenko, 1998c: Temperature of the Indian Ocean. Vol. 3, World Ocean Atlas 1998, NOAA Atlas NESDIS 29, 166 pp.

  • Baehr, J., , J. Hirschi, , J-O. Beismann, , and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62 , 283312.

    • Search Google Scholar
    • Export Citation
  • Baehr, J., , K. Keller, , and J. Marotzke, 2007: Detecting potential changes in the meridional overturning circulation at 26°N in the Atlantic. Climatic Change, in press.

    • Search Google Scholar
    • Export Citation
  • Baringer, M. O., , and J. C. Larsen, 2001: Sixteen years of Florida Current transport. Geophys. Res. Lett., 28 , 31793182.

  • Böning, C. W., , R. Döscher, , and R. G. Budich, 1991: Seasonal transport variation in the western subtropical North Atlantic: Experiments with an eddy-resolving model. J. Phys. Oceanogr., 21 , 12711289.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., , S. Levitus, , J. I. Antonov, , M. Conkright, , T. O’Brien, , and C. Stephens, 1998a: Salinity of the Atlantic Ocean. Vol. 4, World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

  • Boyer, T. P., , S. Levitus, , J. I. Antonov, , M. Conkright, , T. O’Brien, , and C. Stephens, 1998b: Salinity of the Pacific Ocean. Vol. 5, World Ocean Atlas 1998, NOAA Atlas NESDIS 31, 166 pp.

  • Boyer, T. P., , S. Levitus, , J. I. Antonov, , M. Conkright, , T. O’Brien, , C. Stephens, , and B. Trotsenko, 1998c: Salinity of the Indian Ocean. Vol. 6, World Ocean Atlas 1998, NOAA Atlas NESDIS 32, 166 pp.

  • Broecker, W. S., , G. Bond, , M. Klas, , E. Clark, , and J. McManus, 1992: Origin of the northern Atlantic’s Heinrich events. Climate Dyn., 6 , 265273.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1982: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40 , 3953.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , H. R. Longworth, , and S. A. Cunningham, 2005a: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438 , 655657.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , W. E. Johns, , and P. M. Saunders, 2005b: Deep western boundary current east of Abaco: Mean structure and transport. J. Mar. Res., 63 , 3557.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364 , 218220.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13 , 14811495.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , S. Manabe, , and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Deshayes, J., , and C. Frankignoul, 1995: Spectral characteristics of the response of the meridional overturning circulation to deep-water formation. J. Phys. Oceanogr., 35 , 18131825.

    • Search Google Scholar
    • Export Citation
  • Donners, J., , and S. S. Drijfhout, 2004: Impact of cooling on the water mass exchange of the Agulhas rings in a high resolution ocean model. Geophys. Res. Lett., 31 .L16312, doi:10.1029/2004GL020644.

    • Search Google Scholar
    • Export Citation
  • Döscher, R. C., , C. W. Böning, , and P. Herrman, 1994: Response of circulation and heat transport in the North Atlantic to changes in thermohaline forcing in northern latitudes: A model study. J. Phys. Oceanogr., 24 , 23062320.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and R. J. Greatbatch, 2003: A damped oscillation in the North Atlantic climate system. J. Climate, 16 , 40434060.

  • Ganopolski, A., , and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409 , 153158.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Heinrich, H., 1988: Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29 , 142152.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., , and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37 , 743763.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, 2001: Climate Change 2001:. The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39 , 385411.

  • Johnson, H. L., , and D. P. Marshall, 2002: A theory of the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32 , 11211132.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17 , 22942317.

  • Killworth, P. D., , and J. R. Blundell, 2003a: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33 , 784801.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2003b: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part II: Ray propagation and comparison with observations. J. Phys. Oceanogr., 33 , 802821.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2005: The dispersion relation for planetary waves in the presence of mean flow and topography. Part II: Two-dimensional examples and global results. J. Phys. Oceanogr., 35 , 21102133.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and J. R. Blundell, 2007: Planetary wave response to surface forcing and to instability in the presence of mean flow and topography. J. Phys. Oceanogr., 37 , 12971320.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2005: Anomalies of meridional overturning: Mechanisms in the North Atlantic. J. Phys. Oceanogr., 35 , 14551472.

  • Lang, C., , M. Leuenberger, , J. Schwander, , and S. Johnsen, 1999: 16°C rapid temperature variation in central Greenland 70,000 years ago. Science, 286 , 934937.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Marotzke, J., , and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21 , 13721385.

  • Marotzke, J., , S. A. Cunningham, , and H. L. Bryden, cited. 2002: Monitoring the Atlantic meridional overturning circulation at 26.5°N. [Available online at http://www.noc.soton.ac.uk/rapidmoc.].

  • Marsh, R., , B. A. de Cuevas, , A. C. Coward, , H. L. Bryden, , and M. Alvarez, 2005a: Thermohaline circulation at three key sections in the North Atlantic over 1985–2002. Geophys. Res. Lett., 32 .L10604, doi:10.1029/2004GL022281.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., , B. A. de Cuevas, , A. C. Coward, , A. J. G. Nurser, , and S. A. Josey, 2005b: Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model. Ocean Sci. Discuss., 2 , 63104.

    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center, 1988: Digital relief of the surface of the Earth. NOAA Data Announcement 88-MGG-O2. [Available online at http://www.ngdc.noaa.gov/mgg/global/etopo5.html.].

  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 , 429436.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , U. S. Bhatt, , H. L. Simmons, , D. Walsh, , J. E. Walsh, , and X. Zhang, 2005: Multidecadal variability of North Atlantic temperature and salinity during the twentieth century. J. Climate, 18 , 45624580.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., 1980: The role of Ekman flow and planetary waves in the oceanic cross-equatorial heat transport. J. Phys. Oceanogr., 10 , 330341.

    • Search Google Scholar
    • Export Citation
  • Siegenthaler, U., and Coauthors, 2005: Stable carbon cycle–climate relationship during the late Pleistocene. Science, 310 , 13131317.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224241.

  • Sturges, W., , and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25 , 17061715.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Tziperman, E., 1997: Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature, 386 , 592595.

  • Vellinga, M., , and R. A. Woods, 2002: Global impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., 1996: An ocean model code for array processor computers. Comput. Geosci., 22 , 569578.

  • Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11 , 309318.

  • Willebrand, J., , G. H. Philander, , and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10 , 411429.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., , and E. Tziperman, 2005: Nonnormal amplification of the thermohaline circulation. J. Phys. Oceanogr., 35 , 15931605.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 220 85
PDF Downloads 43 43 6

Subannual, Seasonal, and Interannual Variability of the North Atlantic Meridional Overturning Circulation

View More View Less
  • 1 National Oceanography Centre, Southampton, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

An eddy-permitting numerical ocean model is used to investigate the variability of the meridional overturning circulation (MOC). Both wind stress and fluctuations of the seawater density contribute to MOC changes on subannual and seasonal time scales, whereas the interannual variability mainly reflects changes in the density field. Even on subannual and seasonal time scales, a significant fraction of the total MOC variability is due to changes of the density field in the upper 1000 m of the ocean. These changes reflect perturbations of the isopycnal structure that travel westward as Rossby waves. Because of a temporally changing phase difference between the eastern and western boundaries, the Rossby waves affect the MOC by modifying the basinwide east–west density gradient. Both the numerical model used in this study and calculations based on Rossby wave theory suggest that this effect can account for an MOC variability of several Sverdrups (Sv ≡ 106 m3 s−1). These results have implications for the interpretation of variability signals inferred from hydrographic sections and might contribute to the understanding of the results obtained from the Rapid Climate Change (RAPID) monitoring array deployed at 26°N in the North Atlantic Ocean.

Corresponding author address: Dr. Joël J.-M. Hirschi, National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, United Kingdom. Email: jjmh@noc.soton.ac.uk

Abstract

An eddy-permitting numerical ocean model is used to investigate the variability of the meridional overturning circulation (MOC). Both wind stress and fluctuations of the seawater density contribute to MOC changes on subannual and seasonal time scales, whereas the interannual variability mainly reflects changes in the density field. Even on subannual and seasonal time scales, a significant fraction of the total MOC variability is due to changes of the density field in the upper 1000 m of the ocean. These changes reflect perturbations of the isopycnal structure that travel westward as Rossby waves. Because of a temporally changing phase difference between the eastern and western boundaries, the Rossby waves affect the MOC by modifying the basinwide east–west density gradient. Both the numerical model used in this study and calculations based on Rossby wave theory suggest that this effect can account for an MOC variability of several Sverdrups (Sv ≡ 106 m3 s−1). These results have implications for the interpretation of variability signals inferred from hydrographic sections and might contribute to the understanding of the results obtained from the Rapid Climate Change (RAPID) monitoring array deployed at 26°N in the North Atlantic Ocean.

Corresponding author address: Dr. Joël J.-M. Hirschi, National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, United Kingdom. Email: jjmh@noc.soton.ac.uk

Save