• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the zonal mean acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , and M. E. McIntyre, 1978: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmosphere. J. Atmos. Sci., 35 , 175185.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., , and E. E. Davis, 1999: The influence of mesoscale eddies on coarsely resolved density: An examination of subgrid-scale parameterization. J. Phys. Oceanogr., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 2001: A framework for mesoscale eddy parameterization based on density-weighted averaging at fixed height. J. Phys. Oceanogr., 31 , 27972806.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , R. C. Pacanowski, , and B. R. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1982: An ocean model for climate variability studies. Progress in Oceanography, Vol. 11, Pergamon, 69–92.

  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1979: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng., 19 , 5998.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11 , 16771679.

  • Marshall, J., , E. Shuckburgh, , H. Jones, , and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17 , 19501964.

  • McDougall, T. J., , and P. C. McIntosh, 1996: The temporal-residual-mean velocity. Part I: Derivation and the scalar conservation equation. J. Phys. Oceanogr., 26 , 26532665.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31 , 12221246.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , and R. J. Greatbatch, 2004: On advection and diffusion in the mesosphere and lower thermosphere: The role of rotational fluxes. J. Geophys. Res., 109 .D07104, doi:10.1029/2003JD003931.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 2001: A new look at eddy diffusivity as a mixing diagnostic. J. Atmos. Sci., 58 , 36953701.

  • Nurser, A. J. G., , and M-M. Lee, 2004: Isopycnal averaging at constant height. Part I: The formulation and a case study. J. Phys. Oceanogr., 34 , 27212739.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , and M. Visbeck, 2005: A zonally averaged model of the meridional overturning in the Southern Ocean. J. Phys. Oceanogr., 35 , 11901205.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM 2 documentation, user’s guide and reference manual. GFDL Ocean Group Tech. Rep. 3, 232 pp.

  • Radko, T., , and J. Marshall, 2004: Eddy-induced diapycnal fluxes and their role in the maintenance of the thermocline. J. Phys. Oceanogr., 34 , 372383.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., , and C. Garrett, 1996: On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr., 26 , 406416.

  • Wüst, G., 1935: Schichtung und Zirkulation des Atlantischen Ozeans: (Part 2) Die Stratosphäre. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–1927, Vol. 6, Part I, 180 pp. [Reprinted in English as W. J. Emery, Ed., 1978: The Stratosphere of the Atlantic Ocean, Amerind, 112 pp.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 8
PDF Downloads 26 26 5

Interpreting Eddy Fluxes

View More View Less
  • 1 Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Kiel, Germany
  • | 2 Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
  • | 3 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
© Get Permissions
Restricted access

Abstract

A generalization of the transformed Eulerian and temporal residual means is presented. The new formulation uses rotational fluxes of buoyancy, and the full hierarchy of statistical density moments, to reduce the cross-isopycnal eddy flux to the physically relevant component associated with the averaged water mass properties. The resulting eddy-induced diapycnal diffusivity vanishes for adiabatic, statistically steady flow, and is related to either the growth or decay of mesoscale density variance and/or the covariance between small-scale forcing (mixing) and density fluctuations, such as that associated with the irreversible removal of density variance by dissipation. The relationship between the new formulation and previous approaches is described and is illustrated using results from an eddying channel model. The formalism is quite general and applies to all kinds of averaging and to any tracer (not just density).

Corresponding author address: Dr. Carsten Eden, IFM-GEOMAR, FB I, Ocean Circulation and Climate Dynamics, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: ceden@ifm-geomar.de

Abstract

A generalization of the transformed Eulerian and temporal residual means is presented. The new formulation uses rotational fluxes of buoyancy, and the full hierarchy of statistical density moments, to reduce the cross-isopycnal eddy flux to the physically relevant component associated with the averaged water mass properties. The resulting eddy-induced diapycnal diffusivity vanishes for adiabatic, statistically steady flow, and is related to either the growth or decay of mesoscale density variance and/or the covariance between small-scale forcing (mixing) and density fluctuations, such as that associated with the irreversible removal of density variance by dissipation. The relationship between the new formulation and previous approaches is described and is illustrated using results from an eddying channel model. The formalism is quite general and applies to all kinds of averaging and to any tracer (not just density).

Corresponding author address: Dr. Carsten Eden, IFM-GEOMAR, FB I, Ocean Circulation and Climate Dynamics, Düsternbrooker Weg 20, 24105 Kiel, Germany. Email: ceden@ifm-geomar.de

Save