• Atlas, R., , R. Hoffman, , S. Bloom, , J. Jusem, , and J. Ardizzone, 1996: A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Amer. Meteor. Soc., 77 , 869882.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., , and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32 , 29382954.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , and E. C. Brady, 1985: Diagnostic model of the three-dimensional circulation in the upper equatorial Pacific Ocean. J. Phys. Oceanogr., 15 , 12551273.

    • Search Google Scholar
    • Export Citation
  • Cane, M. E., 1980: On the dynamics of equatorial currents, with application to the Indian Ocean. Deep-Sea Res., 27A , 525544.

  • Carton, J. A., , and Z. Zhou, 1997: Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 102 , 2781327824.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , X. Cao, , B. S. Giese, , and A. M. da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr., 26 , 11651175.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Ji, , and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1960: Non-linear theory of a wind-driven homogeneous layer near the equator. Deep-Sea Res., 6 , 303310.

  • Charney, J. G., , and S. Spiegel, 1971: Structure of wind-driven equatorial currents in homogeneous oceans. J. Phys. Oceanogr., 1 , 149160.

    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., , and R. B. Montgomery, 1955: The Equatorial Undercurrent in the light of the vorticity equation. Tellus, 7 , 518521.

  • Foltz, G. R., , S. A. Grodsky, , and J. A. Carton, 2003: Seasonal mixed layer heat budget for the tropical Atlantic Ocean. J. Geophys. Res., 108 .3146, doi:10.1029/202JC001584.

    • Search Google Scholar
    • Export Citation
  • Fonseca, C. A., , G. J. Goni, , W. E. Johns, , and E. J. D. Campos, 2004: Investigation of the North Brazil Current retroflection and North Equatorial Countercurrent variability. Geophys. Res. Lett., 31 .L21304, doi:10.1029/2004GL020054.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., , and J. A. Carton, 2002: Surface drifter pathways originating in the equatorial Atlantic cold tongue. Geophys. Res. Lett., 29 .2147, doi:10.1029/2002GL015788.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., , and C. A. Paul, 1987: Vertical motion in the eastern equatorial Pacific inferred from drifting buoys. Oceanol. Acta, 6 , 2732.

    • Search Google Scholar
    • Export Citation
  • Helber, R. W., , and R. H. Weisberg, 2001: Equatorial upwelling in the western Pacific warm pool. J. Geophys. Res., 106 , 89899003.

  • Jochum, M., , R. Murtugudde, , P. Malanotte-Rizzoli, , and A. J. Busalacchi, 2004: Internal variabilitiy of the tropical Atlantic Ocean. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 181–188.

  • Johnson, E. S., , F. Bonjean, , G. S. E. Lagerloef, , J. T. Gunn, , and G. T. Mitchum, 2007: Validation and error analysis of OSCAR sea surface currents. J. Atmos. Oceanic Technol., 24 , 688701.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., , G. T. Mitchum, , R. B. Lukas, , and P. P. Niiler, 1999: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104 , 2331323326.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and Z. Garraffo, 2005: Evaluating the decomposition of tropical Atlantic drifter observations J. Atmos. Oceanic Technol., 22 , 14031415.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and S. L. Garzoli, 2005: Near-surface circulation in the tropical Atlantic Ocean. Deep-Sea Res. I, 52 , 495518.

  • Mayer, D. A., , and R. H. Weisberg, 1993: A description of COADS surface meteorological fields and the implied Sverdrup transports for the Atlantic Ocean from 30°S to 60°N. J. Phys. Oceanogr., 23 , 22012221.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., , M. J. McPhaden, , and G. C. Johnson, 2001: Vertical velocities and transports in the equatorial Pacific during 1993–99. J. Phys. Oceanogr., 31 , 32303248.

    • Search Google Scholar
    • Export Citation
  • Molinari, R., , S. Bauer, , D. Snowden, , G. Johnson, , B. Bourles, , and Y. Gouriou, 2003: A comparison of kinematic evidence for tropical cells in the Atlantic and Pacific Oceans. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 269–286.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., , and S-P. Xie, 2006: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J. Climate, 19 , 58595874.

    • Search Google Scholar
    • Export Citation
  • Pazan, S. E., , and P. P. Niiler, 2001: Recovery of near-surface velocity from undrogued drifters. J. Atmos. Oceanic Technol., 18 , 476489.

    • Search Google Scholar
    • Export Citation
  • Pérez, V., , E. Fernandez, , E. Maranon, , P. Serret, , and C. Garcia-Soto, 2005: Seasonal and interannual variability of chlorophyll a and primary production in the equatorial Atlantic: In situ and remote sensing observations. J. Plankton Res., 27 , 189197.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., , and R. C. Pacanowski, 1980: The generation of equatorial currents. J. Geophys. Res., 85 , 11231136.

  • Philander, S. G. H., , and R. C. Pacanowski, 1986: A model of the seasonal cycle in the tropical Atlantic Ocean. J. Geophys. Res., 91 , 1419214206.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., , and R. H. Weisberg, 1997: The zonal momentum balance of the Equatorial Undercurrent in the central Pacific. J. Phys. Oceanogr., 27 , 10941119.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1997: Drifting in the wind: Leeway error in shipdrift data. Deep-Sea Res., 44 , 18771903.

  • Richardson, P. L., , and T. K. McKee, 1984: Average seasonal variation of the Atlantic equatorial currents from historical ship drifts. J. Phys. Oceanogr., 14 , 12261238.

    • Search Google Scholar
    • Export Citation
  • Santiago-Mandujano, F., , and E. Firing, 1990: Mixed-layer shear generated by wind stress in the central equatorial Pacific. J. Phys. Oceanogr., 20 , 15761582.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., , and P. Chang, 2004: Thermodynamic coupling and predictability of tropical sea surface temperature. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 171–180.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1960: Wind-drift near the equator. Deep-Sea Res., 6 , 298302.

  • Wang, C., 2005: Subthermocline tropical cells and equatorial subsurface countercurrents. Deep-Sea Res. I, 52 , 123135.

  • Wang, C., , and D. Enfield, 2003: A further study of the tropical Western Hemisphere warm pool. J. Climate, 16 , 14761493.

  • Wang, C., , S-P. Xie, , and J. A. Carton, 2004: A global survey of ocean-atmosphere interaction and climate variability. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 1–19.

  • Weingartner, T. J., , and R. H. Weisberg, 1991a: On the annual cycle of equatorial upwelling in the central Atlantic Ocean. J. Phys. Oceanogr., 21 , 6882.

    • Search Google Scholar
    • Export Citation
  • Weingartner, T. J., , and R. H. Weisberg, 1991b: A description of the annual cycle in sea surface temperature and upper ocean heat in the equatorial Atlantic. J. Phys. Oceanogr., 21 , 8396.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and T. Y. Tang, 1983: Equatorial ocean response to growing and moving wind systems with application to the Atlantic. J. Mar. Res., 41 , 461486.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and T. J. Weingartner, 1986: On the baroclinic response of the zonal pressure-gradient in the equatorial Atlantic-Ocean. J. Geophys. Res., 91 , 17171725.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and T. Y. Tang, 1987: Further studies on the response of the equatorial thermocline in the Atlantic Ocean to the seasonaly varying trade winds. J. Geophys. Res., 92 , 37093727.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and T. J. Weingartner, 1988: Instability waves in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 18 , 16411657.

  • Weisberg, R. H., , and T. Y. Tang, 1990: A linear analysis of equatorial Atlantic Ocean thermocline variability. J. Phys. Oceanogr., 20 , 18131825.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and L. Qiao, 2000: Equatorial upwelling in the central Pacific estimated from moored velocity profiles. J. Phys. Oceanogr., 30 , 105124.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Xie, S-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12 , 6470.

  • Yu, L., , X. Jin, , and R. A. Weller, 2006: Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J. Climate, 19 , 61536169.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 11
PDF Downloads 43 43 12

Satellite-Derived Surface Current Divergence in Relation to Tropical Atlantic SST and Wind

View More View Less
  • 1 College of Marine Science, University of South Florida, Saint Petersburg, Florida
  • | 2 Earth and Space Research, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The relationships between tropical Atlantic Ocean surface currents and horizontal (mass) divergence, sea surface temperature (SST), and winds on monthly-to-annual time scales are described for the time period from 1993 through 2003. Surface horizontal mass divergence (upwelling) is calculated using surface currents estimated from satellite sea surface height, surface vector wind, and SST data with a quasi-linear, steady-state model. Geostrophic and Ekman dynamical contributions are considered. The satellite-derived surface currents match climatological drifter and ship-drift currents well, and divergence patterns are consistent with the annual north–south movement of the intertropical convergence zone (ITCZ) and equatorial cold tongue evolution. While the zonal velocity component is strongest, the meridional velocity component controls divergence along the equator and to the north beneath the ITCZ. Zonal velocity divergence is weaker but nonnegligible. Along the equator, a strong divergence (upwelling) season in the central/eastern equatorial Atlantic peaks in May while equatorial SST is cooling within the cold tongue. In addition, a secondary weaker and shorter equatorial divergence occurs in November also coincident with a slight SST cooling. The vertical transport at 30-m depth, averaged across the equatorial Atlantic Ocean between 2°S and 2°N for the record length, is 15(±6) × 106 m3 s−1. Results are consistent with what is known about equatorial upwelling and cold tongue evolution and establish a new method for observing the tropical upper ocean relative to geostrophic and Ekman dynamics at spatial and temporal coverage characteristic of satellite-based observations.

* Current affiliation: Naval Research Laboratory, Stennis Space Center, Mississippi

Corresponding author address: Robert W. Helber, Naval Research Laboratory, Stennis Space Center, MS 39529. Email: helber@nrlssc.navy.mil

Abstract

The relationships between tropical Atlantic Ocean surface currents and horizontal (mass) divergence, sea surface temperature (SST), and winds on monthly-to-annual time scales are described for the time period from 1993 through 2003. Surface horizontal mass divergence (upwelling) is calculated using surface currents estimated from satellite sea surface height, surface vector wind, and SST data with a quasi-linear, steady-state model. Geostrophic and Ekman dynamical contributions are considered. The satellite-derived surface currents match climatological drifter and ship-drift currents well, and divergence patterns are consistent with the annual north–south movement of the intertropical convergence zone (ITCZ) and equatorial cold tongue evolution. While the zonal velocity component is strongest, the meridional velocity component controls divergence along the equator and to the north beneath the ITCZ. Zonal velocity divergence is weaker but nonnegligible. Along the equator, a strong divergence (upwelling) season in the central/eastern equatorial Atlantic peaks in May while equatorial SST is cooling within the cold tongue. In addition, a secondary weaker and shorter equatorial divergence occurs in November also coincident with a slight SST cooling. The vertical transport at 30-m depth, averaged across the equatorial Atlantic Ocean between 2°S and 2°N for the record length, is 15(±6) × 106 m3 s−1. Results are consistent with what is known about equatorial upwelling and cold tongue evolution and establish a new method for observing the tropical upper ocean relative to geostrophic and Ekman dynamics at spatial and temporal coverage characteristic of satellite-based observations.

* Current affiliation: Naval Research Laboratory, Stennis Space Center, Mississippi

Corresponding author address: Robert W. Helber, Naval Research Laboratory, Stennis Space Center, MS 39529. Email: helber@nrlssc.navy.mil

Save