• Aksenov, Y., 2002: The sea ice-ocean global coupled ARCICE project report part I: Description of dynamical thermodynamical sea ice model. SOC Research and Consultancy Rep. 103, 83 pp.

  • Bishop, J. K., , W. B. Rossow, , and E. G. Dutton, 1997: Surface solar irradiance from the International Satellite Cloud Climatology Project 1983–1991. J. Geophys. Res., 102 , 68836910.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., , S. Levitus, , J. I. Antonov, , M. E. Antonov, , M. E. Conkright, , T. D. O’Brien, , and C. Stephens, 1998: Salinity of the Atlantic Ocean. Vol. 4, World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

  • Bryden, H. L., 1979: Poleward heat-flux and conversion of available potential-energy in Drake Passage. J. Mar. Res., 37 , 122.

  • Bryden, H. L., , and S. A. Cunningham, 2003: How wind-forcing and air-sea heat exchange determine the meridional temperature gradient and stratification for the Antarctic Circumpolar Current. J. Geophys. Res., 108 .3275, doi:10.1029/2001JC001296.

    • Search Google Scholar
    • Export Citation
  • Coward, A. C., , and B. A. de Cuevas, 2005: The OCCAM 66 level model: Physics, initial conditions and external forcing. SOC Internal Rep. 99, 58 pp.

  • Danabasoglu, G., , J. C. McWilliams, , and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264 , 11231126.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., , and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A , 10571085.

    • Search Google Scholar
    • Export Citation
  • Döös, K., , and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., , and R. J. Greatbatch, 1999: The bolus velocity in the stochastic theory of ocean turbulent tracer transport. J. Phys. Oceanogr., 29 , 24422456.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gorden, A. L., , and W. B. Owens, 1987: Polar oceans. Rev. Geophys., 25 , 227233.

  • Gouretski, V. V., , and K. Jancke, 1996: A new hydrographic data set for the South Pacific: Synthesis of WOCE and historical data. WHP SAC Tech. Rep. 2, WOCE Rep. 143/96, 110 pp.

  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., , S. P. O’Farrell, , and H. B. Gordon, 2000: Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations. J. Climate, 13 , 139163.

    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., , N. Z. Cherkis, , J. Woodward, , R. Macnab, , and B. Coakley, 2000: New grid of Arctic bathymetry aids scientists and mapmakers. Eos, Trans. Amer. Geophys. Union, 81 , 89.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32 , 33283345.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 431471.

  • Karsten, R. H., , and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and A. J. G. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 317–336.

  • Large, W. G., , G. Danabasoglu, , S. C. Doney, , and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., , and R. G. Williams, 2000: The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res., 58 , 895917.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., , and A. Coward, 2003: Eddy mass transport in an eddy-permitting global ocean model. Ocean Modell., 5 , 249266.

  • Marshall, J., , E. Shuckbourgh, , H. Jones, , and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31 , 12221246.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., , and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26 , 16551660.

  • Nowlin, W. D., , and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24 , 469491.

  • Nurser, A. J. G., , and M-M. Lee, 2004a: Isopycnal averaging at constant height. Part I: The exact formulation and a case study. J. Phys. Oceanogr., 34 , 27212739.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., , and M-M. Lee, 2004b: Isopycnal averaging at constant height. Part II: Relating to residual streamfunction. J. Phys. Oceanogr., 34 , 27402755.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , and V. O. Ivchenko, 2001: On the meridional circulation and balance of momentum in the Southern Ocean of POP. Ocean Dyn., 52 , 7993.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. Whitworth III, , and W. D. Nowling Jr., 1995: On the meridional extent and fonts of the Antarctic Circumpolar Current. Deep-Sea Res., 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM 2 documentation, user’s guide and bibreference manual. Geophysical Fluid Dynamics Laboratory/NOAA Ocean Group Tech. Rep. 3, 232 pp.

  • Phillips, H. E., , and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30 , 30503076.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., , and W. H. F. Smith, 1995: Marine gravity from satellite altimetry. The Geological Data Center, Scripps Institution of Oceanography, digital media, version 7.2.

  • Speer, K., , S. R. Rintoul, , and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979–91 and comparisons to other climatologies. J. Climate, 6 , 13011326.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On the eddy mixing and mean flow properties. J. Phys. Oceanogr., 28 , 727739.

  • Treguier, A. M., 1999: Evaluating eddy mixing coefficients from eddy-resolving ocean models: A case study. J. Mar. Res., 57 , 89108.

  • Webb, D. J., , B. A. de Cuevas, , and A. C. Coward, 1998: The first main run of the OCCAM global ocean model. Southampton Oceanography Centre Internal Rep. 34, 50 pp. [Available online at http://www.soc.soton.ac.uk/JRD/OCCAM.].

  • Wijffels, S. E., 2001: Ocean transport of fresh water. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 475–488.

  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104 , C6. 1323513249.

  • Xie, P., , and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 27
PDF Downloads 69 69 19

Eddy Advective and Diffusive Transports of Heat and Salt in the Southern Ocean

View More View Less
  • 1 James Rennell Division for Ocean Circulation and Climate, National Oceanography Centre, Southampton, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

There are two distinct mechanisms by which eddies provide systematic transport of tracer on isopycnals: the advective transport, associated with the slumping of isopycnals, and the diffusive transport, associated with down-gradient diffusion. Depending on the large-scale tracer distribution, eddy advective transport has either the same direction as or opposite direction to eddy diffusive transport. As a consequence, eddy advection and eddy diffusion can reinforce each other for some tracers but oppose each other for other tracers. Using scaling analysis, it is argued that the relative directions of eddy advective and diffusive transports can be determined simply from the relative slopes of tracers and isopycnals. An eddy-resolving (1/12°) global ocean model is used to illustrate the two eddy transport mechanisms for temperature and salinity in the Southern Ocean. Applications to other tracers, such as oxygen, are discussed. The diagnosed eddy diffusivity for temperature (and salinity) is found to be considerably different from the eddy diffusivity for eddy advective transport velocity.

Corresponding author address: Dr. Mei-Man Lee, James Rennell Division for Ocean Circulation and Climate, National Oceanography Centre, Southampton, Empress Dock, Southampton SO14 3ZH, United Kingdom. Email: mmlee@noc.soton.ac.uk

Abstract

There are two distinct mechanisms by which eddies provide systematic transport of tracer on isopycnals: the advective transport, associated with the slumping of isopycnals, and the diffusive transport, associated with down-gradient diffusion. Depending on the large-scale tracer distribution, eddy advective transport has either the same direction as or opposite direction to eddy diffusive transport. As a consequence, eddy advection and eddy diffusion can reinforce each other for some tracers but oppose each other for other tracers. Using scaling analysis, it is argued that the relative directions of eddy advective and diffusive transports can be determined simply from the relative slopes of tracers and isopycnals. An eddy-resolving (1/12°) global ocean model is used to illustrate the two eddy transport mechanisms for temperature and salinity in the Southern Ocean. Applications to other tracers, such as oxygen, are discussed. The diagnosed eddy diffusivity for temperature (and salinity) is found to be considerably different from the eddy diffusivity for eddy advective transport velocity.

Corresponding author address: Dr. Mei-Man Lee, James Rennell Division for Ocean Circulation and Climate, National Oceanography Centre, Southampton, Empress Dock, Southampton SO14 3ZH, United Kingdom. Email: mmlee@noc.soton.ac.uk

Save