• Alford, M. H., 2003a: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30 .1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003b: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423 , 159162.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. I: Interannual to interdecadal variability. J. Geophys. Res., 107 .4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , J. R. Scott, , and K. A. Emanuel, 2004: Transient diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 34 , 334341.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , R. A. deSzoeke, , M. G. Schlax, , K. El Naggar, , and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106 , 1477114781.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Garrett, C., , and L. St. Laurent, 2002: Aspects of deep ocean mixing. J. Oceanogr., 58 , 1124.

  • Gates, W. L., , and A. B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a one-degree grid. Part 1: Terrain heights. Tech. Rep. R-1276-1-ARPA, The Rand Corporation, 132 pp.

  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Graham, N. E., , and W. B. White, 1988: The El Niño cycle: A natural oscillator of the Pacific ocean–atmosphere system. Science, 240 , 12931302.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2000: Developments in ocean climate modelling. Ocean Modell., 2 , 123192.

  • Gu, D., , and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the Tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1997: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135 , 5465.

  • Hallberg, R., 2000: Time integration of diapycnal diffusion and Richardson number–dependent mixing in isopycnal coordinate ocean models. Mon. Wea. Rev., 128 , 14021419.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and P. Rhines, 1996: Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26 , 913940.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Huang, R. X., 2004: Ocean, energy flows in. Encyclopedia of Energy, C. J. Cleveland, Ed., Vol. 4, Elsevier, 497–509.

  • Huang, R. X., , and J. Pedlosky, 1999: Climate variability inferred from a layered model of the ventilated thermocline. J. Phys. Oceanogr., 29 , 779790.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , and Q. Wang, 2001: Interior communication from the subtropical to the tropical oceans. J. Phys. Oceanogr., 31 , 35383550.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , W. Wang, , and L. L. Liu, 2006: Decadal variability of wind energy input to the World Ocean. Deep-Sea Res. II, 53 , 3141.

  • Knutson, T. R., , and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11 , 22732296.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences. Tellus, 19 , 98106.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Legler, D. M., , and J. J. O’Brien, 1988: Tropical Pacific wind stress analysis for TOGA. IOC Series of Ocean Measurements, ICO Technical Series 33, Vol. 4, UNESCO, 11–17.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., , R. Burgett, , and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Liu, Z., 1999: Forced planetary wave response in a thermocline gyre. J. Phys. Oceanogr., 29 , 10361055.

  • Loder, J. W., , and C. Garrett, 1978: The 18.6-year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. J. Geophys. Res., 83 , C4. 19671970.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58 , 3544.

  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1983: A model of tropical ocean–atmosphere interaction. Mon. Wea. Rev., 111 , 370387.

  • McDermott, D. A., 1996: The regulation of northern overturning by Southern Hemisphere winds. J. Phys. Oceanogr., 26 , 12341255.

  • McPhaden, M. J., , and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Nagasawa, M., , Y. Niwa, , and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105 , C6. 1393313943.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 , 8389.

  • Pacanowski, R. C., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Sandström, J. W., 1908: Dynamische Versuche mit Meerwasser. Ann. Hydrogr. Marit. Meteor., 36 , 623.

  • Sandström, J. W., 1916: Meteorologische studien im schwedischen Hochgebirge. Goteborgs K. Vetensk. Vitterhets-Samh Handl., Ser. 4, Vol. 22, No. 2, 48 pp.

  • Scott, J. R., , and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32 , 35783595.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., , K. A. Kelly, , D. Darr, , and R. Hallberg, 2002: Buoyancy and mixed layer effects on the sea surface height response in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 32 , 36573670.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and R. X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34 , 12671275.

  • Wang, W., , and R. X. Huang, 2004b: Wind energy input to the surface waves. J. Phys. Oceanogr., 34 , 12761280.

  • Wang, W., , and R. X. Huang, 2005: An experimental study on thermal circulation driven by horizontal differential heating. J. Fluid Mech., 540 , 4973.

    • Search Google Scholar
    • Export Citation
  • Wright, D. G., 1997: An equation of state for use in ocean models: Eckart’s formula revisited. J. Atmos. Oceanic Technol., 14 , 735740.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the ocean general circulation. J. Phys. Oceanogr., 28 , 23322340.

  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., , R. J. Greatbatch, , and J. Sheng, 2004: Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31 .L14315, doi:10.1029/2004GL020084.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 1
PDF Downloads 6 6 1

Climate Variability in the Equatorial Pacific Ocean Induced by Decadal Variability of Mixing Coefficient

View More View Less
  • 1 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
  • | 2 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

The circulation in the equatorial Pacific Ocean is studied in a series of numerical experiments based on an isopycnal coordinate model. The model is subject to monthly mean climatology of wind stress and surface thermohaline forcing. In response to decadal variability in the diapycnal mixing coefficient, sea surface temperature and other properties of the circulation system oscillate periodically. The strongest sea surface temperature anomaly appears in the geographic location of Niño-3 region with the amplitude on the order of 0.5°C, if the model is subject to a 30-yr sinusoidal oscillation in diapycnal mixing coefficient that varies between 0.03 × 10−4 and 0.27 × 10−4 m2 s−1. Changes in diapycnal mixing coefficient of this amplitude are within the bulk range consistent with the external mechanical energy input in the global ocean, especially when considering the great changes of tropical cyclones during the past decades. Thus, time-varying diapycnal mixing associated with changes in wind energy input into the ocean may play a nonnegligible role in decadal climate variability in the equatorial circulation and climate.

* Current affiliation: The First Institute of Oceanography, State Oceanic Administration, Qingdao, China

Corresponding author address: Wei Wang, Physical Oceanography Laboratory, Ocean University of China, Qingdao 266003, Shandong, China. Email: wei@ouc.edu.cn

Abstract

The circulation in the equatorial Pacific Ocean is studied in a series of numerical experiments based on an isopycnal coordinate model. The model is subject to monthly mean climatology of wind stress and surface thermohaline forcing. In response to decadal variability in the diapycnal mixing coefficient, sea surface temperature and other properties of the circulation system oscillate periodically. The strongest sea surface temperature anomaly appears in the geographic location of Niño-3 region with the amplitude on the order of 0.5°C, if the model is subject to a 30-yr sinusoidal oscillation in diapycnal mixing coefficient that varies between 0.03 × 10−4 and 0.27 × 10−4 m2 s−1. Changes in diapycnal mixing coefficient of this amplitude are within the bulk range consistent with the external mechanical energy input in the global ocean, especially when considering the great changes of tropical cyclones during the past decades. Thus, time-varying diapycnal mixing associated with changes in wind energy input into the ocean may play a nonnegligible role in decadal climate variability in the equatorial circulation and climate.

* Current affiliation: The First Institute of Oceanography, State Oceanic Administration, Qingdao, China

Corresponding author address: Wei Wang, Physical Oceanography Laboratory, Ocean University of China, Qingdao 266003, Shandong, China. Email: wei@ouc.edu.cn

Save