• Belkin, I. M., , and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich Meridian to Tasmania. J. Geophys. Res., 101 , 36753696.

    • Search Google Scholar
    • Export Citation
  • Best, S. E., , V. O. Ivchenko, , K. J. Richards, , R. D. Smith, , and R. C. Malone, 1999: Eddies in numerical models of the Antarctic Circumpolar Current and their influence on the mean flow. J. Phys. Oceanogr., 29 , 328350.

    • Search Google Scholar
    • Export Citation
  • Budillon, G., , and S. R. Rintoul, 2003: Fronts and upper ocean thermal variability south of New Zealand. Antarct. Sci., 15 , 141152.

  • Deacon, G. E. R., 1937: The hydrology of the Southern Ocean. Discov. Rep, 15 , 1124.

  • Ducet, N., , P. Y. Le Traon, , and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , C8. 1947719498.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1994: Mean sea-surface height of the Antarctic Circumpolar Current Geosat data: Method and application. J. Geophys. Res., 99 , C9. 1825518274.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1972: On the interaction of the Antarctic Circumpolar Current and the Macquarie Ridge. Antarctic Oceanology II: The Australian-New Zealand Sector, D. E. Hayes, Ed., Antarctic Research Series, Vol. 19, Amer. Geophys. Union, 71–78.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., , and K. P. Koltermann, 2004: WOCE global hydrographic climatology. Tech. Rep. 35, Berichte des BSH, 54 pp.

  • Hughes, C. W., , and E. Ash, 2001: Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res., 106 , 27132722.

  • Killworth, P. D., , and C. W. Hughes, 2002: The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res., 60 , 1945.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P., , F. Nadal, , and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15 , 522534.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., , and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31 , 14271439.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., , R. D. Smith, , A. J. Semtner, , and R. C. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1994 atmospheric winds. J. Geophys. Res., 103 , 3082530853.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., , B. Bang, , and H. Sasaki, 2005: Observational evidence of alternating jets in the World Ocean. Geophys. Res. Lett., 32 .L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , W. R. Holland, , and J. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2 , 213291.

    • Search Google Scholar
    • Export Citation
  • Moore, J., , M. Abbott, , and J. Richman, 1999: Location and dynamics of the Antarctic polar front from satellite sea surface temperature data. J. Geophys. Res., 104 , 30593073.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., , A. Brut, , and A. Chaigneau, 2003: Seasonal and interannual variations of the upper ocean energetics between Tasmania and Antarctica. Deep-Sea Res. I, 50 , 339356.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., , and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3 , 5355.

  • Nakano, H., , and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35 , 474488.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., , N. A. Maximenko, , and J. C. McWilliams, 2003: Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30 .2164, doi:10.1029/2003GL018628.

    • Search Google Scholar
    • Export Citation
  • Nowlin Jr., W. D., , and M. Clifford, 1982: The kinematic and thermohaline zonation of the Antarctic Circumpolar Current at Drake Passage. J. Mar. Res., 40 , (Suppl.). 481507.

    • Search Google Scholar
    • Export Citation
  • Nowlin Jr., W. D., , T. Whitworth, , and R. D. Pillsbury, 1977: Structure and transport of Antarctic Circumpolar Current at Drake Passage from short-term measurements. J. Phys. Oceanogr., 7 , 788802.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , V. Gouretski, , G. Seiß, , and J. Schröter, 1992: Hydrographic Atlas of the Southern Ocean. Alfred Wegener Institute for Polar and Marine Research, 17 pp. + 82 plates.

  • Olbers, D., , D. Borowski, , C. Völker, , and J-O. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16 , 439470.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , and T. W. Whitworth III, 2005: Southern Ocean. Vol. 1, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), M. Sparrow, P. Chapman, and J. Gould, Eds., International WOCE Project Office, 223 pp.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., , T. W. Whitworth III, , and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., , and L. Stramma, 1991: Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography, Vol. 26, Pergamon Press, 1–73.

  • Pollard, R. T., , M. I. Lucas, , and J. F. Read, 2002: Physical controls on biogeochemical zonation in the Southern Ocean. Deep-Sea Res. II, 49 , 32893305.

    • Search Google Scholar
    • Export Citation
  • Read, J. F., , R. T. Pollard, , A. I. Morrison, , and C. Symon, 1995: On the southerly extent of the Antarctic Circumpolar Current in the southeast Pacific. Deep-Sea Res. II, 42 , 933954.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a β-plane. J. Fluid Mech., 69 , 417433.

  • Rhines, P. B., 1977: The dynamics of unsteady currents: Marine modeling. The Sea, E. D. Goldberg et al., Eds., Ocean Engineering Science, Vol. 6, John Wiley and Sons, 189–318.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1989: Deep planetary circulation over topography: Simple models of midocean flows. J. Phys. Oceanogr., 19 , 14491470.

  • Rhines, P. B., 1994: Jets. Chaos, 4 , 313339.

  • Rintoul, S. R., , and J. L. Bullister, 1999: A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res. I, 46 , 14171454.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., , J-R. Donguy, , and D. H. Roemmich, 1997: Seasonal evolution of upper ocean thermal structure between Tasmania and Antarctica. Deep-Sea Res. I, 44 , 11851202.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., , C. Hughes, , and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. A. Church, and J. Gould, Eds., Academic Press, 271–302.

    • Search Google Scholar
    • Export Citation
  • Sievers, H. A., , and W. D. Nowlin Jr., 1984: The stratification and water masses at Drake Passage. J. Geophys. Res., 89 , 1048910514.

  • Sinha, B., , and K. J. Richards, 1999: Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr., 29 , 11431155.

  • Sokolov, S., , and S. R. Rintoul, 2002: Structure of Southern Ocean fronts at 140°E. J. Mar. Syst., 37 , 151184.

  • Sparrow, M. D., , K. J. Heywood, , J. Brown, , and D. P. Stevens, 1996: Current structure of the south Indian Ocean. J. Geophys. Res., 101 , 63776392.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , C. Wunsch, , and R. M. Ponte, 2000: De-aliasing of global high frequency barotropic motions in altimeter observations. Geophys. Res. Lett., 27 , 11751178.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , and D. R. Watts, 2001: A circumpolar gravest empirical mode for the Southern Ocean hydrography. J. Geophys. Res., 106 , 28332856.

    • Search Google Scholar
    • Export Citation
  • Tansley, C. E., , and D. P. Marshall, 2001: On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr., 31 , 32583273.

  • Treguier, A. M., , and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized mode for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20 , 321343.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , and R. L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 24 , 22632277.

    • Search Google Scholar
    • Export Citation
  • Watts, D. R., , C. Sun, , and S. R. Rintoul, 2001: A two-dimensional gravest empirical mode determined from hydrographic observations in the subantarctic front. J. Phys. Oceanogr., 31 , 21862209.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., , and B. A. de Cuevas, 2003: The region of large sea surface height variability in the southeast Pacific Ocean. J. Phys. Oceanogr., 33 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: I. Barotropic representations of Jovian and terrestrial turbulence. J. Atmos. Sci., 35 , 13991426.

    • Search Google Scholar
    • Export Citation
  • Wolff, J-O., , E. Maier-Reimer, , and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21 , 236264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 27
PDF Downloads 97 97 26

Multiple Jets of the Antarctic Circumpolar Current South of Australia

View More View Less
  • 1 CSIRO Marine and Atmospheric Research, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

Maps of the gradient of sea surface height (SSH) and sea surface temperature (SST) reveal that the Antarctic Circumpolar Current (ACC) consists of multiple jets or frontal filaments. The braided and patchy nature of the gradient fields seems at odds with the traditional view, derived from hydrographic sections, that the ACC is made up of three continuous circumpolar fronts. By applying a nonlinear fitting procedure to 638 weekly maps of SSH gradient (SSH), it is shown that the distribution of maxima in SSH (i.e., fronts) is strongly peaked at particular values of absolute SSH (i.e., streamlines). The association between the jets and particular streamlines persists despite strong topographic and eddy–mean flow interactions, which cause the jets to merge, diverge, and fluctuate in intensity along their path. The SSH values corresponding to each frontal branch are nearly constant over the sector of the Southern Ocean between 100°E and 180°. The front positions inferred from SSH agree closely with positions inferred from hydrographic sections using traditional water mass criteria. Recognition of the multiple branches of the Southern Ocean fronts helps to reconcile differences between front locations determined by previous studies. Weekly maps of SSH are used to characterize the structure and variability of the ACC fronts and filaments. The path, width, and intensity of the frontal branches are influenced strongly by the bathymetry. The “meander envelopes” of the fronts are narrow on the northern slope of topographic ridges, where the sloping topography reinforces the β effect, and broader over abyssal plains.

* This paper is an addition to the collection of papers published in the February 2007 Journal of Physical Oceanography Special Issue in Honor of Carl Wunsch (see acknowledgments)

Corresponding author address: Serguei Sokolov, CSIRO Marine and Atmospheric Research, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, TAS 7001, Australia. Email: serguei.sokolov@csiro.au

This article included in the In Honor of Carl Wunsch special collection.

Abstract

Maps of the gradient of sea surface height (SSH) and sea surface temperature (SST) reveal that the Antarctic Circumpolar Current (ACC) consists of multiple jets or frontal filaments. The braided and patchy nature of the gradient fields seems at odds with the traditional view, derived from hydrographic sections, that the ACC is made up of three continuous circumpolar fronts. By applying a nonlinear fitting procedure to 638 weekly maps of SSH gradient (SSH), it is shown that the distribution of maxima in SSH (i.e., fronts) is strongly peaked at particular values of absolute SSH (i.e., streamlines). The association between the jets and particular streamlines persists despite strong topographic and eddy–mean flow interactions, which cause the jets to merge, diverge, and fluctuate in intensity along their path. The SSH values corresponding to each frontal branch are nearly constant over the sector of the Southern Ocean between 100°E and 180°. The front positions inferred from SSH agree closely with positions inferred from hydrographic sections using traditional water mass criteria. Recognition of the multiple branches of the Southern Ocean fronts helps to reconcile differences between front locations determined by previous studies. Weekly maps of SSH are used to characterize the structure and variability of the ACC fronts and filaments. The path, width, and intensity of the frontal branches are influenced strongly by the bathymetry. The “meander envelopes” of the fronts are narrow on the northern slope of topographic ridges, where the sloping topography reinforces the β effect, and broader over abyssal plains.

* This paper is an addition to the collection of papers published in the February 2007 Journal of Physical Oceanography Special Issue in Honor of Carl Wunsch (see acknowledgments)

Corresponding author address: Serguei Sokolov, CSIRO Marine and Atmospheric Research, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, TAS 7001, Australia. Email: serguei.sokolov@csiro.au

This article included in the In Honor of Carl Wunsch special collection.

Save