• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed-layer near-inertial motions. J. Phys. Oceanogr., 31 , 23592368.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003a: Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature, 423 , 159163.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003b: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30 , 14241427.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and M. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106 , 1694716968.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37 , 18491858.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , M. C. Gregg, , and M. A. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36 , 9971018.

    • Search Google Scholar
    • Export Citation
  • Briscoe, M. G., 1975: Preliminary results from the trimoored internal wave experiment (IWEX). J. Geophys. Res., 80 , 38723884.

  • Chiswell, S. M., 1994: Vertical structure of the baroclinic tides in the central North Pacific subtropical gyre. J. Phys. Oceanogr., 24 , 20322039.

    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., 2002: Energy levels, phase, and amplitude modulation of the baroclinic tide off Hawaii. J. Phys. Oceanogr., 32 , 26402651.

    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., 2006: Altimeter and current meter observations of internal tides: Do they agree? J. Phys. Oceanogr., 36 , 18601872.

  • Cummins, P. F., , J. Y. Cherniawski, , and M. G. G. Foreman, 2001: North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modelling. J. Mar. Res., 59 , 167191.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15 , 943959.

  • D’Asaro, E. A., 1989: The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res., 94 , 20452056.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1991: A strategy for investigating and modeling internal wave sources and sinks. Dynamics of Oceanic Internal Gravity Waves II: Proc. ’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 451–466.

  • D’Asaro, E. A., , C. E. Eriksen, , M. D. Levine, , P. Niiler, , C. A. Paulson, , and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25 , 29092936.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B., , B. Cuornelle, , P. F. Worcester, , B. Howe, , and D. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25 , 631647.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 , 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , 2247522502.

    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., 1996: Manual for tidal heights analysis and prediction. Pacific Marine Science Rep. 77-10, Institute of Ocean Sciences, Patricia Bay, Sidney, BC, Canada, 58 pp.

  • Fu, L-L., 1981: Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys., 19 , 141170.

  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31 , 962971.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80 , 291297.

  • Gilbert, D., , and C. J. R. Garrett, 1989: Implications for ocean mixing of internal wave scattering off irregular topography. J. Phys. Oceanogr., 19 , 17161729.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wake of a storm. J. Phys. Oceanogr., 14 , 11291151.

  • Hasumi, H., , and N. Suginohara, 1999: Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res., 104 , 2336723374.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., , and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31 .L01301, doi:10.1029/2003GL017998.

    • Search Google Scholar
    • Export Citation
  • Kantha, L., , and C. Tierney, 1997: Global baroclinic tides. Progress in Oceanography, Vol. 40, Pergamon Press, 163–178.

  • Koopmans, L. H., 1995: The Spectral Analysis of Time Series. Academic Press, 366 pp.

  • Kunze, E., , L. Rosenfield, , G. Carter, , and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32 , 18901913.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and T. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • MacKinnon, J. A., , and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32 .L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., , P. E. Holloway, , and T. M. S. Johnston, 2001: The generation of internal tides at the Hawaiian Ridge. Geophys. Res. Lett., 28 , 559562.

    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., , and S. M. Chiswell, 2000: Coherence of internal tide variations along the Hawaiian Ridge. J. Geophys. Res., 105 , 653661.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., , D. R. Caldwell, , J. D. Nash, , and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32 , 21132130.

    • Search Google Scholar
    • Export Citation
  • Muller, P., , and X. Liu, 2000: Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J. Phys. Oceanogr., 30 , 532549.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Nagasawa, M., , Y. Niwa, , and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105 , 1393313943.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., , E. Kunze, , K. Polzin, , J. Toole, , and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34 , 11171134.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., , M. H. Alford, , and E. Kunze, 2005: Estimating internal-wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22 , 15511570.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., , M. H. Alford, , E. Kunze, , K. Martini, , S. Kelly, , and E. F. Williams, 2006: Hotspots of deep mixing on the Oregon continental slope. Eos, Trans. Amer. Geophys. Union, 87 .(Spring Meeting Suppl.), Abstract OS44F-01.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and T. Hibiya, 2001: Numerical study of the spatial distribution of the. M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106 , 2244122449.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , and N. Pomphrey, 1981: Disqualifying two candidates for the energy balance of oceanic internal waves. J. Phys. Oceanogr., 11 , 14231425.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: A heuristic description of internal wave dynamics. J. Phys. Oceanogr., 34 , 214230.

  • Rainville, L., , and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36 , 12201236.

  • Ray, R. D., , and G. T. Mitchum, 1997: Surface manifestations of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography, Vol. 40, Pergamon Press, 135–162.

  • Ray, R. D., , and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28 , 12591262.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301 , 355357.

  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28 , 712726.

  • Simmons, H., , S. Jayne, , L. S. Laurent, , and A. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 82 , 245263.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., , and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

  • Thorpe, S. A., 1999: On internal wave groups. J. Phys. Oceanogr., 29 , 10851095.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 208 13
PDF Downloads 140 140 10

Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux

View More View Less
  • 1 Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With bandpass filtering, the calculation is performed for the semidiurnal band (emphasizing M2 internal tides, generated by flow over sloping topography) and for the near-inertial band (emphasizing wind-generated waves near the Coriolis frequency). The time dependence of semidiurnal E and F is first examined at six locations north of the Hawaiian Ridge; E and F typically rise and fall together and can vary by over an order of magnitude at each site. This variability typically has a strong spring–neap component, in addition to longer time scales. The observed spring tides at sites northwest of the Hawaiian Ridge are coherent with barotropic forcing at the ridge, but lagged by times consistent with travel at the theoretical mode-1 group speed from the ridge. Phase computed from 14-day windows varies by approximately ±45° on monthly time scales, implying refraction by mesoscale currents and stratification. This refraction also causes the bulk of internal-tide energy flux to be undetectable by altimetry and other long-term harmonic-analysis techniques. As found previously, the mean flux in both frequency bands is O(1 kW m−1), sufficient to radiate a substantial fraction of energy far from each source. Tidal flux is generally away from regions of strong topography. Near-inertial flux is overwhelmingly equatorward, as required for waves generated at the inertial frequency on a β plane, and is winter-enhanced, consistent with storm generation. In a companion paper, the group velocity, ĉgFE−1, is examined for both frequency bands.

Corresponding author address: M. H. Alford, Applied Physics Laboratory, 1013 NE 40th St., Seattle, WA 98105. Email: malford@apl.washington.edu

Abstract

Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With bandpass filtering, the calculation is performed for the semidiurnal band (emphasizing M2 internal tides, generated by flow over sloping topography) and for the near-inertial band (emphasizing wind-generated waves near the Coriolis frequency). The time dependence of semidiurnal E and F is first examined at six locations north of the Hawaiian Ridge; E and F typically rise and fall together and can vary by over an order of magnitude at each site. This variability typically has a strong spring–neap component, in addition to longer time scales. The observed spring tides at sites northwest of the Hawaiian Ridge are coherent with barotropic forcing at the ridge, but lagged by times consistent with travel at the theoretical mode-1 group speed from the ridge. Phase computed from 14-day windows varies by approximately ±45° on monthly time scales, implying refraction by mesoscale currents and stratification. This refraction also causes the bulk of internal-tide energy flux to be undetectable by altimetry and other long-term harmonic-analysis techniques. As found previously, the mean flux in both frequency bands is O(1 kW m−1), sufficient to radiate a substantial fraction of energy far from each source. Tidal flux is generally away from regions of strong topography. Near-inertial flux is overwhelmingly equatorward, as required for waves generated at the inertial frequency on a β plane, and is winter-enhanced, consistent with storm generation. In a companion paper, the group velocity, ĉgFE−1, is examined for both frequency bands.

Corresponding author address: M. H. Alford, Applied Physics Laboratory, 1013 NE 40th St., Seattle, WA 98105. Email: malford@apl.washington.edu

Save