• Béranger, K., , B. Barnier, , S. Gulev, , and M. Crépon, 2006: Comparing 20 years of precipitation estimates from different sources over the World Ocean. Ocean Dyn., 56 , 104138.

    • Search Google Scholar
    • Export Citation
  • Bevington, P. R., , and D. K. Robinson, 2004: Data Reduction and Error Analysis. 3d ed. McGraw-Hill, 320 pp.

  • Bindoff, N. L., , and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Bishop, J. K. B., , and W. B. Rossow, 1991: Spatial and temporal variability of global surface solar irradiance. J. Geophys. Res., 96 , 1683916858.

    • Search Google Scholar
    • Export Citation
  • Bishop, J. K. B., , W. B. Rossow, , and E. G. Dutton, 1997: Surface solar irradiance from the International Satellite Cloud Climatology Project 1983–1991. J. Geophys. Res., 102 , 68836910.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , and M. A. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31 , 34963515.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , G. Chepurin, , X. Cao, , and B. Giese, 2000a: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Method. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , G. Chepurin, , and X. Cao, 2000b: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30 , 311326.

    • Search Google Scholar
    • Export Citation
  • Cheney, R., , L. Miller, , and J. Kuhn, cited. 1997: TOPEX/Poseidon altimeter gridded sea level deviation analysis. [Available online at http://ibis.grdl.noaa.gov/SAT/hist/tp_products/topex.html.].

  • Cheney, R., , L. Miller, , C-K. Tai, , J. Kuhn, , and J. Lillibridge, cited. 2000: TOPEX/Poseidon altimeter along-track sea level deviation analysis. [Available online at http://ibis.grdl.noaa.gov/SAT/hist/tp_products/topex.html.].

  • Chepurin, G. A., , and J. A. Carton, 1999: Comparison of retrospective analyses of the global ocean heat content. Dyn. Atmos. Oceans, 29 , 119145.

    • Search Google Scholar
    • Export Citation
  • Clark, C. O., , P. J. Webster, , and J. E. Cole, 2003: Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J. Climate, 16 , 548554.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , J. C. McWilliams, , and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264 , 11231126.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., , C. Henin, , F. Masia, , and D. Varillon, 2000: Three decades of in situ sea surface salinity measurements in the tropical Pacific Ocean 1969–1999. CD-ROM Version 1.0. [Available online at http://www.ird.nc/ECOP/notcd/bucket.htm.].

  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., , W. G. Large, , and F. O. Bryan, 1998: Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. J. Climate, 11 , 14221443.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., , S. Yeager, , G. Danabasoglu, , W. G. Large, , and J. C. McWilliams, 2003: Modeling global oceanic inter-annual variability (1958–1997): Simulation design and model-data evaluation. NCAR Tech. Note NCAR/TN-452+STR, 48 pp.

  • Dong, S., , and K. A. Kelly, 2004: The heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34 , 12141231.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., , and R. E. Thomson, 2004: Data Analysis Methods in Physical Oceanography. 2d ed. Elsevier, 638 pp.

  • Fu, L-L., 2003: Wind-forced intraseasonal sea level variability of the extratropical oceans. J. Phys. Oceanogr., 33 , 436449.

  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P. R., , F. O. Bryan, , G. Danabasoglu, , S. C. Doney, , W. R. Holland, , W. G. Large, , and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11 , 12871306.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39 , 385411.

  • Jayne, S. R., , and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32 , 33283345.

  • Ji, M., , A. Leetmaa, , and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123 , 460481.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kelly, K. A., 2004: The relationship between oceanic heat transport and surface fluxes in the western North Pacific: 1970–2000. J. Climate, 17 , 573588.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , G. Danabasoglu, , S. C. Doney, , and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , G. Danabasoglu, , J. C. McWilliams, , P. R. Gent, , and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31 , 518536.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , T. Boyer, , M. Conkright, , D. Johnson, , T. O’Brien, , J. Antonov, , C. Stephens, , and R. Gelfeld, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Levitus, S., , J. I. Antonov, , T. P. Boyer, , and C. Stephens, 2000a: Warming of the World Ocean. Science, 287 , 22252229.

  • Levitus, S., , C. Stephens, , J. Antonov, , and T. P. Boyer, 2000b: Yearly and Year-Season Upper Ocean Temperature Anomaly Fields, 1948–1998. NOAA Atlas NESDIS 40, 23 pp.

  • Lysne, J., , and C. Deser, 2002: Wind-driven thermocline variability in the Pacific: A model–data comparison. J. Climate, 15 , 829845.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., , R. D. Smith, , A. J. Semtner, , and R. C. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103 , 3082530853.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , and G. Danabasoglu, 2002: Eulerian and eddy-induced meridional overturning circulations in the Tropics. J. Phys. Oceanogr., 32 , 20542071.

    • Search Google Scholar
    • Export Citation
  • NCAR Oceanography Section, 1996: The NCAR CSM Ocean Model. NCAR Tech. Note NCAR/TN-423+STR, 84 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307.].

  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F. F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , J. Gilson, , J. Willis, , P. Sutton, , and K. Ridgeway, 2005: Closing the time-varying mass and heat budgets for large ocean areas: The Tasman Box. J. Climate, 18 , 23302343.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., , R. Gudgel, , and K. Miyakoda, 1995: Decadal analysis produced from an ocean assimilation system. Mon. Wea. Rev., 123 , 22062228.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Saji, N. H., , B. N. Goswami, , P. N. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , and M. A. Cane, 1995: On heat flux boundary conditions for ocean models. J. Phys. Oceanogr., 25 , 32193230.

  • Smith, T. M., , R. W. Reynolds, , R. E. Livezey, , and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9 , 14031420.

    • Search Google Scholar
    • Export Citation
  • Snedecor, G. W., , and W. G. Cochran, 1980: Statistical Methods. 7th ed. Iowa State University Press, 507 pp.

  • Spall, M. A., , R. A. Weller, , and P. W. Furey, 2000: Modeling the three-dimensional upper ocean heat budget and subduction rate during the Subduction Experiment. J. Geophys. Res., 105 , 2615126166.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979–91 and comparisons to other climatologies. J. Climate, 6 , 13011326.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Steric and wind-induced changes in TOPEX/Poseidon large-scale sea surface topography observations. J. Geophys. Res., 102 , 2098721009.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , R. Tokmakian, , A. Semtner, , and C. Wunsch, 1996: How well does a 1/4° global circulation model simulate large-scale oceanic observations? J. Geophys. Res., 101 , 2577925811.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat, and freshwater transports of the global ocean circulation during 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108 .3007, doi:10.1029/2001JC001115.

    • Search Google Scholar
    • Export Citation
  • White, W., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability. Progress in Oceanography, Vol. 36, Pergamon Press, 169–217.

  • White, W. B., , and C-K. Tai, 1995: Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry. J. Geophys. Res., 100 , 2494324954.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., , D. Roemmich, , and B. Cornuelle, 2003: Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J. Geophys. Res., 108 .3292, doi:10.1029/2002JC001755.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., , D. Roemmich, , and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109 .C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., , and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34 , 15281547.

  • Yu, L. S., , and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–1998 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., , and M. M. Rienecker, 2000: Indian Ocean warming of 1997–1998. J. Geophys. Res., 105 , 1692316939.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 8
PDF Downloads 74 74 11

Mechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation

View More View Less
  • 1 Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The interannual variability in upper-ocean (0–400 m) temperature and governing mechanisms for the period 1968–97 are quantified from a global ocean hindcast simulation driven by atmospheric reanalysis and satellite data products. The unconstrained simulation exhibits considerable skill in replicating the observed interannual variability in vertically integrated heat content estimated from hydrographic data and monthly satellite sea surface temperature and sea surface height data. Globally, the most significant interannual variability modes arise from El Niño–Southern Oscillation and the Indian Ocean zonal mode, with substantial extension beyond the Tropics into the midlatitudes. In the well-stratified Tropics and subtropics, net annual heat storage variability is driven predominately by the convergence of the advective heat transport, mostly reflecting velocity anomalies times the mean temperature field. Vertical velocity variability is caused by remote wind forcing, and subsurface temperature anomalies are governed mostly by isopycnal displacements (heave). The dynamics at mid- to high latitudes are qualitatively different and vary regionally. Interannual temperature variability is more coherent with depth because of deep winter mixing and variations in western boundary currents and the Antarctic Circumpolar Current that span the upper thermocline. Net annual heat storage variability is forced by a mixture of local air–sea heat fluxes and the convergence of the advective heat transport, the latter resulting from both velocity and temperature anomalies. Also, density-compensated temperature changes on isopycnal surfaces (spice) are quantitatively significant.

Corresponding author address: Scott C. Doney, Dept. of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. Email: sdoney@whoi.edu

Abstract

The interannual variability in upper-ocean (0–400 m) temperature and governing mechanisms for the period 1968–97 are quantified from a global ocean hindcast simulation driven by atmospheric reanalysis and satellite data products. The unconstrained simulation exhibits considerable skill in replicating the observed interannual variability in vertically integrated heat content estimated from hydrographic data and monthly satellite sea surface temperature and sea surface height data. Globally, the most significant interannual variability modes arise from El Niño–Southern Oscillation and the Indian Ocean zonal mode, with substantial extension beyond the Tropics into the midlatitudes. In the well-stratified Tropics and subtropics, net annual heat storage variability is driven predominately by the convergence of the advective heat transport, mostly reflecting velocity anomalies times the mean temperature field. Vertical velocity variability is caused by remote wind forcing, and subsurface temperature anomalies are governed mostly by isopycnal displacements (heave). The dynamics at mid- to high latitudes are qualitatively different and vary regionally. Interannual temperature variability is more coherent with depth because of deep winter mixing and variations in western boundary currents and the Antarctic Circumpolar Current that span the upper thermocline. Net annual heat storage variability is forced by a mixture of local air–sea heat fluxes and the convergence of the advective heat transport, the latter resulting from both velocity and temperature anomalies. Also, density-compensated temperature changes on isopycnal surfaces (spice) are quantitatively significant.

Corresponding author address: Scott C. Doney, Dept. of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. Email: sdoney@whoi.edu

Save