• Agrawal, Y. C., , E. A. Terray, , M. A. Donelan, , P. A. Hwang, , A. J. Williams, , W. Drennan, , K. Kahm, , and S. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath breaking waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., , and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25 , 20252045.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., , I. R. Young, , and M. L. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., 106 , 1165911676.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Bryan, K. R., , K. P. Black, , and R. M. Gorman, 2003: Spectral estimates of dissipation rate within and near the surf zone. J. Phys. Oceanogr., 33 , 979993.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr., 31 , 31333145.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., , and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1984: The free surface turbulent shear layer. J. Phys. Oceanogr., 14 , 402411.

  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Dewey, R. K., , and W. R. Crawford, 1988: Bottom stress estimates from vertical dissipation rate profiles on the continental shelf. J. Phys. Oceanogr., 18 , 11671177.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LéMehauté and D. M. Hanes, Eds., Ocean Engineering Science, Vol. 9, John Wiley and Sons, 239–292.

  • Drennan, W. M., , M. A. Donelan, , E. A. Terray, , and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , H. C. Graber, , and M. A. Donelan, 1999: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr., 29 , 18531864.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., , R. T. Guza, , and B. Raubenheimer, 2001: Current meter performance in the surfzone. J. Atmos. Oceanic Technol., 18 , 17351746.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., , and J. H. Trowbridge, 2005: The effect of wave breaking on surfzone turbulence and alongshore currents: A modeling study. J. Phys. Oceanogr., 35 , 21872203.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., , and A. J. Williams III, 2007: Direct estimation of the Reynolds stress vertical structure in the nearshore. J. Atmos. Oceanic Technol., 24 , 102116.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., , R. T. Guza, , S. Elgar, , and T. H. C. Herbers, 1998: Alongshore momentum balances in the nearshore. J. Geophys. Res., 103 , 1566715676.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., , R. T. Guza, , and S. Elgar, 2004: Inverse modeling of one-dimensional setup and alongshore current in the nearshore. J. Phys. Oceanogr., 34 , 920933.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., , and J. N. Moum, 1995: Mixing efficiencies in turbulent tidal fronts: Results from direct and indirect measurement of density flux. J. Phys. Oceanogr., 25 , 25832608.

    • Search Google Scholar
    • Export Citation
  • George, R., , R. E. Flick, , and R. T. Guza, 1994: Observations of turbulence in the surf zone. J. Geophys. Res., 99 , 801810.

  • Grant, W. D., , and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84 , 17971808.

  • Gross, T. F., , and A. R. M. Nowell, 1985: Spectral scaling in a tidal boundary layer. J. Phys. Oceanogr., 15 , 496508.

  • Large, W. G., , and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

  • Lumley, J. L., , and E. A. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13 , 20002007.

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101 , 1205912069.

  • Peters, H., , and R. Bokhorst, 2000: Microstructure observations of turbulent mixing in a partially mixed estuary. Part I: Dissipation rate. J. Phys. Oceanogr., 30 , 12321244.

    • Search Google Scholar
    • Export Citation
  • Reynolds, W. C., 1976: Computation of turbulent flow. Annu. Rev. Fluid Mech., 8 , 183207.

  • Rieder, K. F., , J. A. Smith, , and R. A. Weller, 1996: Some evidence of colinear wind stress and wave breaking. J. Phys. Oceanogr., 26 , 25192524.

    • Search Google Scholar
    • Export Citation
  • Rodi, W., 1987: Examples of calculation methods for flow and mixing in stratified fluid. J. Geophys. Res., 92 , 53055328.

  • Shaw, W. J., , J. H. Trowbridge, , and A. J. Williams III, 2001: The budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. J. Geophys. Res., 106 , 95519564.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., , and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50 , 371395.

    • Search Google Scholar
    • Export Citation
  • Stips, A., , H. Burchard, , K. Bolding, , H. Prandke, , A. Simon, , and A. Wüest, 2005: Measurement and simulation of viscous dissipation in the wave affected surface layer. Deep-Sea Res. II, 52 , 11331155.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., , and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams, , and P. Hwang, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , W. M. Drennan, , and M. A. Donelan, 1999: The vertical structure of shear and dissipation in the ocean surface layer. Proc. Symp. on the Wind-Driven Air-Sea Interface-Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, University of New South Wales, 239–245.

  • Trowbridge, J. H., , and S. Elgar, 2001: Turbulence measurements in the surfzone. J. Phys. Oceanogr., 31 , 24032417.

  • Trowbridge, J. H., , and S. Elgar, 2003: Spatial scales of stress-carrying nearshore turbulence. J. Phys. Oceanogr., 33 , 11221128.

  • Trowbridge, J. H., , W. R. Geyer, , M. M. Bowen, , and A. J. Williams, 1999: Near-bottom turbulence measurements in a partially mixed estuary: Turbulent energy balance, velocity structure, and along-channel momentum balance. J. Phys. Oceanogr., 29 , 30563072.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61 , 235265.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 25
PDF Downloads 82 82 15

Vertical Structure of Dissipation in the Nearshore

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The vertical structure of the dissipation of turbulence kinetic energy was observed in the nearshore region (3.2-m mean water depth) with a tripod of three acoustic Doppler current meters off a sandy ocean beach. Surface and bottom boundary layer dissipation scaling concepts overlap in this region. No depth-limited wave breaking occurred at the tripod, but wind-induced whitecapping wave breaking did occur. Dissipation is maximum near the surface and minimum at middepth, with a secondary maximum near the bed. The observed dissipation does not follow a surfzone scaling, nor does it follow a “log layer” surface or bottom boundary layer scaling. At the upper two current meters, dissipation follows a modified deep-water breaking-wave scaling. Vertical shear in the mean currents is negligible and shear production magnitude is much less than dissipation, implying that the vertical diffusion of turbulence is important. The increased near-bed secondary dissipation maximum results from a decrease in the turbulent length scale.

Corresponding author address: F. Feddersen, SIO, 9500 Gilman Dr., La Jolla, CA 92093-0209. Email: falk@coast.ucsd.edu

Abstract

The vertical structure of the dissipation of turbulence kinetic energy was observed in the nearshore region (3.2-m mean water depth) with a tripod of three acoustic Doppler current meters off a sandy ocean beach. Surface and bottom boundary layer dissipation scaling concepts overlap in this region. No depth-limited wave breaking occurred at the tripod, but wind-induced whitecapping wave breaking did occur. Dissipation is maximum near the surface and minimum at middepth, with a secondary maximum near the bed. The observed dissipation does not follow a surfzone scaling, nor does it follow a “log layer” surface or bottom boundary layer scaling. At the upper two current meters, dissipation follows a modified deep-water breaking-wave scaling. Vertical shear in the mean currents is negligible and shear production magnitude is much less than dissipation, implying that the vertical diffusion of turbulence is important. The increased near-bed secondary dissipation maximum results from a decrease in the turbulent length scale.

Corresponding author address: F. Feddersen, SIO, 9500 Gilman Dr., La Jolla, CA 92093-0209. Email: falk@coast.ucsd.edu

Save