• Bretherton, F., , R. Davis, , and C. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23 , 559582.

    • Search Google Scholar
    • Export Citation
  • Cramér, H., 1946: Mathematical Methods of Statistics. Princeton University Press, 575 pp.

  • Dickson, R., , J. Lazier, , J. Meincke, , P. Rhines, , and J. Swift, 1996: Long term coordinated changes in the convective activity of the North Atlantic. Progress in Oceanography, Vol. 38, Pergamon Press, 241–295.

  • Forget, G., , B. Ferron, , and H. Mercier, 2007: Combining Argo profiles with a general circulation model in the North Atlantic. Part 1: Estimation of hydrographic and circulation anomalies from synthetic profiles, over a year. Ocean Modell., in press.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gilson, J., , D. Roemmich, , B. Cornuelle, , and L. Fu, 1998: Relationship of TOPEX/Poseidon altimetric height and circulation in the North Pacific. J. Geophys. Res., 103 , 2794727965.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., , and K. Koltermann, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Tech. Rep. 35, 52 pp.

  • Hill, C., , D. Menemenlis, , B. Ciotti, , and C. Henze, 2007: Investigating solution convergence in a global ocean model using a 2048-processor cluster of distributed shared memory machines. Sci. Programm., in press.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W., , M. Spillane, , M. McPhaden, , and D. Harrison, 1996: Scales of variability in the equatorial Pacific inferred from the Tropical Atmosphere–Ocean buoy array. J. Climate, 9 , 29993024.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., , J. Pedlosky, , and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Lysne, J., , and C. Deser, 2002: Wind-driven thermocline variability in the Pacific: A model–data comparison. J. Climate, 15 , 829845.

    • Search Google Scholar
    • Export Citation
  • Maes, C., , M. McPhaden, , and D. Behringer, 2002: Signatures of salinity variability in tropical Pacific Ocean dynamic height anomalies. J. Geophys. Res., 107 .8012, doi:10.1029/2000JC000737.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103 , 1416914240.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and B. Cornuelle, 1990: Observing the fluctuations of gyre-scale ocean circulation: A study of the subtropical South Pacific. J. Phys. Oceanogr., 20 , 19191930.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2001: Argo: The global array of profiling floats. Observing the Oceans in the 21st Century, C. J. Koblinsky and N. R. Smith, Eds., GODAE Project Office and Bureau of Meteorology, 248–258.

  • Smith, R., , M. Maltrud, , F. F. O. Bryan, , and W. M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristic of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27 , 17431770.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , and C. Wunsch, 1999: Temporal changes in eddy energy of the oceans. Deep-Sea Res., 46 , 77108.

  • Stammer, D., , R. Tokmakian, , A. Semtner, , and C. Wunsch, 1996: How well does a 1/4° global circulation model simulate large-scale oceanic observations? J. Geophys. Res., 101 , 2577925812.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , C. Wunsch, , and K. Ueyoshi, 2006: Temporal changes in ocean eddy transports. J. Phys. Oceanogr., 36 , 543550.

  • Stephens, C., , J. I. Antonov, , T. P. Boyer, , M. E. Conkright, , R. A. Locarnini, , T. D. O’Brien, , and H. E. Garcia, 2002: Temperature. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 167 pp.

  • Willis, J. K., , D. Roemmich, , and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109 .C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic kinetic energy. J. Phys. Oceanogr., 27 , 17701794.

  • Wunsch, C., 1999: A summary of North Atlantic baroclinic variability. J. Phys. Oceanogr., 29 , 31613166.

  • Wunsch, C., , and D. Stammer, 1998: Satellite altimetry, the marine geoid and the oceanic general circulation. Annu. Rev. Earth Planet. Sci., 26 , 219253.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and P. Heimbach, 2006: Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr., 36 , 20122024.

    • Search Google Scholar
    • Export Citation
  • Zang, X., , and C. Wunsch, 2001: Spectral description of low-frequency oceanic variability. J. Phys. Oceanogr., 31 , 30733095.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 19
PDF Downloads 29 29 7

Estimated Global Hydrographic Variability

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

An estimate is made of the three-dimensional global oceanic temperature and salinity variability, omitting the seasonal cycle, both as a major descriptive element of the ocean circulation and for use in the error estimates of state estimation. Historical hydrography, recent data from the World Ocean Circulation Experiment, and Argo profile data are all used. Root-mean-square vertical displacements in the upper 300 m of the ocean are generally smaller than 50 m, except in energetic boundary currents and in the North Atlantic subpolar gyre. Variability in temperature and salinity is strongly correlated below the top 100 m. Salinity contributions to sea surface height variability appear more significant at low latitudes than expected, possibly resulting from advective and diffusive processes. Results are generally consistent with altimetric variability under two simple kinematic hypotheses, and much of the observed structure coincides with known dynamical features. A large fraction of the sea surface height variability is consistent with the hypothesis of dominance of the first baroclinic mode.

Corresponding author address: Dr. Gaël Forget, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Room 54-1516, 77 Massachusetts Avenue, Cambridge, MA 02139. Email: gforget@mit.edu

Abstract

An estimate is made of the three-dimensional global oceanic temperature and salinity variability, omitting the seasonal cycle, both as a major descriptive element of the ocean circulation and for use in the error estimates of state estimation. Historical hydrography, recent data from the World Ocean Circulation Experiment, and Argo profile data are all used. Root-mean-square vertical displacements in the upper 300 m of the ocean are generally smaller than 50 m, except in energetic boundary currents and in the North Atlantic subpolar gyre. Variability in temperature and salinity is strongly correlated below the top 100 m. Salinity contributions to sea surface height variability appear more significant at low latitudes than expected, possibly resulting from advective and diffusive processes. Results are generally consistent with altimetric variability under two simple kinematic hypotheses, and much of the observed structure coincides with known dynamical features. A large fraction of the sea surface height variability is consistent with the hypothesis of dominance of the first baroclinic mode.

Corresponding author address: Dr. Gaël Forget, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Room 54-1516, 77 Massachusetts Avenue, Cambridge, MA 02139. Email: gforget@mit.edu

Save