Mixed Layer Instabilities and Restratification

Giulio Boccaletti Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Giulio Boccaletti in
Current site
Google Scholar
PubMed
Close
,
Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
, and
Baylor Fox-Kemper Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field is studied. The lateral gradients are shown to be unstable to ageostrophic baroclinic instabilities and slump from the horizontal to the vertical. These instabilities, which are referred to as mixed layer instabilities (MLIs), differ from instabilities in the ocean interior because of the weak surface stratification. Spatial scales are O(1–10) km, and growth time scales are on the order of a day. Linear stability analysis and fully nonlinear simulations are used to study MLIs and their impact on mixed layer restratification. The main result is that MLIs are a leading-order process in the ML heat budget acting to constantly restratify the surface ocean. Climate and regional ocean models do not resolve the scales associated with MLIs and are likely to underestimate the rate of ML restratification and consequently suffer from a bias in sea surface temperatures and ML depths. In a forthcoming paper, the authors discuss a parameterization scheme to include the effect of MLIs in ocean models.

Corresponding author address: Raffaele Ferrari, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 54-1420, 77 Massachusetts Ave., Cambridge, MA 02139. Email: rferrari@mit.edu

Abstract

The restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field is studied. The lateral gradients are shown to be unstable to ageostrophic baroclinic instabilities and slump from the horizontal to the vertical. These instabilities, which are referred to as mixed layer instabilities (MLIs), differ from instabilities in the ocean interior because of the weak surface stratification. Spatial scales are O(1–10) km, and growth time scales are on the order of a day. Linear stability analysis and fully nonlinear simulations are used to study MLIs and their impact on mixed layer restratification. The main result is that MLIs are a leading-order process in the ML heat budget acting to constantly restratify the surface ocean. Climate and regional ocean models do not resolve the scales associated with MLIs and are likely to underestimate the rate of ML restratification and consequently suffer from a bias in sea surface temperatures and ML depths. In a forthcoming paper, the authors discuss a parameterization scheme to include the effect of MLIs in ocean models.

Corresponding author address: Raffaele Ferrari, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 54-1420, 77 Massachusetts Ave., Cambridge, MA 02139. Email: rferrari@mit.edu

Save
  • Barth, J. A., 1994: Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res., 99 , 1609516115.

  • Beron-Vera, F. J., and P. Ripa, 1997: Free boundary effects in baroclinic instability. J. Fluid Mech., 352 , 245264.

  • Bishop, C. H., 1993: On the behaviour of baroclinic waves undergoing horizontal deformation. II: Error-bound amplification and Rossby wave diagnostic. Quart. J. Roy. Meteor. Soc., 119 , 241267.

    • Search Google Scholar
    • Export Citation
  • Blumen, N., 1979: On short-wave baroclinic instability. J. Atmos. Sci., 36 , 19251933.

  • Charney, J. P., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4 , 135163.

  • Cronin, M., and D. R. Watts, 1996: Eddy-mean flow interactions in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26 , 21072131.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 2000: Air–Sea Interactions. Cambridge University Press, 239 pp.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Eldevik, T., and K. B. Dysthe, 2002: Spiral eddies. J. Phys. Oceanogr., 32 , 851869.

  • Ferrari, R., and D. Rudnick, 2000: The thermohaline structure of the upper ocean. J. Geophys. Res., 105 , 1685716883.

  • Flament, P., L. Armi, and L. Washburn, 1985: The evolving structure of an upwelling filament. J. Geophys. Res., 90 , 1176511778.

  • Fukamachi, Y., J. P. McCreary, and J. A. Proehl, 1995: Instability of density fronts in layer and continuously stratified models. J. Geophys. Res., 100 , 25592577.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., N. Nakamura, and I. M. Held, 1992: Nonlinear equilibration of two-dimensional Eady waves: A new perspective. J. Atmos. Sci., 49 , 19841996.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21 , 499528.

    • Search Google Scholar
    • Export Citation
  • Green, J., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Griffies, S., and R. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28 , 634658.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1976: Marine Optics. Elsevier, 231 pp.

  • Jones, H., and J. Marshall, 1997: Restratification after deep convection. J. Phys. Oceanogr., 27 , 22762287.

  • Jones, W. L., 1967: Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30 , 439448.

  • Lapeyre, G., P. Klein, and B. L. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36 , 15771590.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open ocean tracer release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102 , 57335752.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and W. R. Peltier, 1987: Cyclogenesis in frontal zones. J. Atmos. Sci., 44 , 384409.

  • Munk, W., L. Armi, K. Fischer, and Z. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, 456A , 12171280.

  • Nakamura, N., 1988: Scale selection of baroclinic instability—Effects of stratification and nongeostrophy. J. Atmos. Sci., 45 , 32533268.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and J. W. Zhang, 2000: Eddy-induced mixed-layer shallowing and mixed-layer/thermocline exchange. J. Geophys. Res., 105 , 2185121868.

    • Search Google Scholar
    • Export Citation
  • Ou, H., 1984: Geostrophic adjustment: A mechanism for frontogenesis? J. Phys. Oceanogr., 14 , 9941000.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer, 710 pp.

  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35 , 165174.

    • Search Google Scholar
    • Export Citation
  • Pollard, R., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22 , 609625.

  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11 , 153175.

  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Reznick, G. M., V. Zeitlin, and M. B. Jelloul, 2001: Nonlinear theory of geostrophic adjustment. Part I: Rotating shallow-water model. J. Fluid Mech., 445 , 93120.

    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1995: On improving a one-layer model with thermodynamics. J. Fluid Mech., 303 , 169201.

  • Ripa, P., 2001: Waves and resonance in free-boundary baroclinic instability. J. Fluid Mech., 428 , 387408.

  • Rossby, C. G., 1937: On the mutual adjustment of pressure and velocity distributions in certain simple current systems. I. J. Mar. Res., 1 , 1528.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems. II. J. Mar. Res., 2 , 239263.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28 , 20452048.

  • Samelson, R. M., 1993: Linear instability of a mixed-layer front. J. Geophys. Res., 98 , 1019510204.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 1997: Baroclinic jets in confluent flow. J. Phys. Oceanogr., 27 , 381402.

  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23 , 390400.

  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27 , 721726.

  • Stone, P. H., 1971: Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech., 46 , 659671.

  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29 , 405418.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24 , 14191424.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1995: Geostrophic adjustment and restratification of a mixed layer with horizontal gradients above a stratified layer. J. Phys. Oceanogr., 25 , 22292241.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35 , 24572466.

  • Thomas, L. N., and P. B. Rhines, 2002: Nonlinear stratified spin-up. J. Fluid Mech., 473 , 211244.

  • Thorpe, S. A., 1998: Nonlinear reflection of internal waves at a density discontinuity at the base of the mixed layer. J. Phys. Oceanogr., 28 , 18531860.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 458 pp.

  • Vanneste, J., 1993: The Kelvin–Helmholtz instability in a non-geostrophic baroclinic unstable flow. Math. Comput. Model., 17 , 149154.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24 , 18121826.

  • Young, W. R., and L. Chen, 1995: Baroclinic instability and thermohaline gradient alignment in the mixed layer. J. Phys. Oceanogr., 25 , 31723185.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5495 1763 399
PDF Downloads 3981 1117 87