Three-Dimensional Mesoscale Dipole Frontal Collisions

Sara Dubosq Institut de Ciències del Mar, CSIC, Barcelona, Spain

Search for other papers by Sara Dubosq in
Current site
Google Scholar
PubMed
Close
and
Álvaro Viúdez Institut de Ciències del Mar, CSIC, Barcelona, Spain

Search for other papers by Álvaro Viúdez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Frontal collisions of mesoscale baroclinic dipoles are numerically investigated using a three-dimensional, Boussinesq, and f-plane numerical model that explicitly conserves potential vorticity on isopycnals. The initial conditions, obtained using the potential vorticity initialization approach, consist of twin baroclinic dipoles, balanced (void of waves) and static and inertially stable, moving in opposite directions. The dipoles may collide in a close-to-axial way (cyclone–anticyclone collisions) or nonaxially (cyclone–cyclone or anticyclone–anticyclone collisions). The results show that the interacting vortices may bounce back and interchange partners, may merge reaching a tripole state, or may squeeze between the outer vortices. The formation of a stable tripole from two colliding dipoles is possible but is dependent on diffusion effects. It is found that the nonaxial dipole collisions can be characterized by the interchange between the domain-averaged potential and kinetic energy. Dipole collisions in two-dimensional flow display also a variety of vortex interactions, qualitatively similar to the three-dimensional cases.

* Additional affiliation: École Nationale Supérieure de Techniques Avancées, Paris, France

Corresponding author address: Sara Dubosq, Clayrac, 81630 Salvagnac, France. Email: sara.dubosq@free.fr

Abstract

Frontal collisions of mesoscale baroclinic dipoles are numerically investigated using a three-dimensional, Boussinesq, and f-plane numerical model that explicitly conserves potential vorticity on isopycnals. The initial conditions, obtained using the potential vorticity initialization approach, consist of twin baroclinic dipoles, balanced (void of waves) and static and inertially stable, moving in opposite directions. The dipoles may collide in a close-to-axial way (cyclone–anticyclone collisions) or nonaxially (cyclone–cyclone or anticyclone–anticyclone collisions). The results show that the interacting vortices may bounce back and interchange partners, may merge reaching a tripole state, or may squeeze between the outer vortices. The formation of a stable tripole from two colliding dipoles is possible but is dependent on diffusion effects. It is found that the nonaxial dipole collisions can be characterized by the interchange between the domain-averaged potential and kinetic energy. Dipole collisions in two-dimensional flow display also a variety of vortex interactions, qualitatively similar to the three-dimensional cases.

* Additional affiliation: École Nationale Supérieure de Techniques Avancées, Paris, France

Corresponding author address: Sara Dubosq, Clayrac, 81630 Salvagnac, France. Email: sara.dubosq@free.fr

Save
  • Afanasyev, Y., 2003: Spontaneous emission of gravity waves by interacting vortex dipoles in a stratified fluid: Laboratory experiments. Geophys. Astrophys. Fluid Dyn., 97 , 7995.

    • Search Google Scholar
    • Export Citation
  • Ahlnäs, K., T. C. Royer, and T. H. George, 1987: Multiple dipole eddies in the Alaska Coastal Current detected with Landsat thematic mapper data. J. Geophys. Res., 92 , 1304113047.

    • Search Google Scholar
    • Export Citation
  • Berson, D., and Z. Kizner, 2002: Contraction of westward-travelling nonlocal modons due to the vorticity filament emission. Nonlin. Proc. Geophys., 20 , 115.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., O. U. Velasco Fuentes, and P. Orlandi, 1997: Inviscid dipole-vortex rebound from a wall or coast. J. Fluid Mech., 351 , 75103.

    • Search Google Scholar
    • Export Citation
  • Carton, X., 2001: Hydrodynamical modeling of oceanic vortices. Surv. Geophys., 22 , 179263.

  • Couder, Y., and C. Basdevant, 1986: Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech., 173 , 225251.

    • Search Google Scholar
    • Export Citation
  • Danaila, I., 2004: Vortex dipoles impinging on finite aspect ratio rectangular obstacles. Flow Turb. Comb., 72 , 391406.

  • de Ruijter, W. P. M., H. M. van Aken, E. J. Beier, J. R. E. Lutjeharms, R. P. Matano, and M. W. Schouten, 2004: Eddies and dipoles around South Madagascar: Formation, pathways and large-scale impact. Deep-Sea Res. I, 51 , 383400.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and A. Viúdez, 2003: A balanced approach to modelling rotating stably-stratified geophysical flows. J. Fluid Mech., 488 , 123150.

    • Search Google Scholar
    • Export Citation
  • Eames, I., and J. B. Flór, 1998: Fluid transport by dipolar vortices. Dyn. Atmos. Oceans, 28 , 93105.

  • Fedorov, K. N., and A. I. Ginzburg, 1986: Mushroom-like currents (vortex dipoles) in the ocean and in a laboratory tank. Ann. Geophys. B-Terr. P., 4 , 507516.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., M. E. Stern, and J. A. Whitehead, 1983: The physical significance of modons: Laboratory experiments and general integral constraints. Dyn. Atmos. Oceans, 7 , 233263.

    • Search Google Scholar
    • Export Citation
  • Ginzburg, A. I., and K. N. Fedorov, 1984: The evolution of a mushroom-formed current in the ocean. Dokl. Akad. Nauk USSR, 274 , 481484.

    • Search Google Scholar
    • Export Citation
  • Godoy-Diana, R., J-M. Chomaz, and C. Donnadieu, 2006: Internal gravity waves in a dipolar wind: A wave–vortex interaction experiment in a stratified fluid. J. Fluid Mech., 548 , 281308.

    • Search Google Scholar
    • Export Citation
  • Ikeda, M., L. A. Mysak, and W. J. Emery, 1984: Observation and modeling of satellite-sensed meanders and eddies off Vancouver Island. J. Phys. Oceanogr., 14 , 321.

    • Search Google Scholar
    • Export Citation
  • Johannessen, J. A., E. Svendsen, O. M. Johannessen, and K. Lygre, 1989: Three-dimensional structure of mesoscale eddies in the Norwegian coastal current. J. Phys. Oceanogr., 19 , 319.

    • Search Google Scholar
    • Export Citation
  • Juul Rasmussen, J., J. S. Hesthaven, J. P. Lynov, A. H. Nielsen, and M. R. Schmidt, 1996: Dipolar vortices in two-dimensional flows. Math. Comp. Simul., 40 , 207221.

    • Search Google Scholar
    • Export Citation
  • Kloosterziel, R. C., G. F. Carnevale, and D. Philippe, 1993: Propagation of barotropic dipoles over topography in a rotating tank. Dyn. Atmos. Oceans, 19 , 65100.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1983: Interactions of isolated vortices. II: Modon generation by monopole collision. Geophys. Astrophys. Fluid Dyn., 19 , 207227.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and N. J. Zabusky, 1982: Interaction of isolated vortices. I: Modons colliding with modons. Geophys. Astrophys. Fluid Dyn., 19 , 207227.

    • Search Google Scholar
    • Export Citation
  • Mied, R. P., J. C. McWilliams, and G. J. Lindermann, 1991: The generation and evolution of mushroomlike vortices. J. Phys. Oceanogr., 21 , 489510.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., P. Scully-Power, and F. Zachariasen, 1987: Ships from space (The Bakerian Lecture). Proc. Roy. Soc. London, 412A , 231259.

    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., and A. Viúdez, 2006: Three-dimensional ageostrophic motion in mesoscale vortex dipoles. J. Phys. Oceanogr., 37 , 84105.

    • Search Google Scholar
    • Export Citation
  • Sansón, L. Z., G. J. F. van Heijst, and N. A. Backx, 2001: Ekman decay of a dipolar vortex in a rotating fluid. Phys. Fluids, 13 , 440451.

    • Search Google Scholar
    • Export Citation
  • Sheres, D., and K. E. Kenyon, 1989: A double vortex along the California coast. J. Geophys. Res., 94 , 49894997.

  • Simpson, J. J., and R. J. Lynn, 1990: A mesoscale eddy dipole in the offshore California current. J. Geophys. Res., 95 , 1300913022.

  • Stern, M. E., 1975: Minimal properties of planetary eddies. Euro. J. Mar. Res., 33 , 113.

  • Vandermeirsch, F. O., X. J. Carton, and Y. G. Morel, 2002: Interaction between an eddy and a zonal jet. Part II. Two-and-a-half-layer model. Dyn. Atmos. Oceans, 36 , 271296.

    • Search Google Scholar
    • Export Citation
  • van Heijst, G. J. F., and J. B. Flór, 1989: Dipole formation and collisions in a stratified fluid. Nature, 340 , 212215.

  • Vastano, A. C., and R. L. Bernstein, 1984: Mesoscale features along the first Oyashio intrusion. J. Geophys. Res., 89 , 587596.

  • Velasco Fuentes, O. U., and G. J. F. van Heijst, 1995: Collision of dipolar vortices on a β plane. Phys. Fluids, 7 , 27352750.

  • Viúdez, A., and D. G. Dritschel, 2003: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech., 483 , 199223.

  • Voropayev, S. I., and Y. A. D. Afanasyev, 1992: Two-dimensional vortex-dipole interactions in a stratified fluid. J. Fluid Mech., 236 , 665689.

    • Search Google Scholar
    • Export Citation
  • Voropayev, S. I., and Y. A. D. Afanasyev, 1994: Vortex Structures in a Stratified Fluid. Chapman and Hall, 230 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 44 5
PDF Downloads 57 31 6