The Turbulent Oscillator: A Mechanism of Low-Frequency Variability of the Wind-Driven Ocean Gyres

P. Berloff Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by P. Berloff in
Current site
Google Scholar
PubMed
Close
,
A. Mc C. Hogg Research School of Earth Sciences, Australian National University, Canberra, Australia

Search for other papers by A. Mc C. Hogg in
Current site
Google Scholar
PubMed
Close
, and
W. Dewar Department of Oceanography, The Florida State University, Tallahassee, Florida

Search for other papers by W. Dewar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intrinsic low-frequency variability is studied in the idealized, quasigeostrophic, midlatitude, wind-driven ocean gyres operating at large Reynolds number. A robust decadal variability mode driven by the transient mesoscale eddies is found and analyzed. The variability is a turbulent phenomenon, which is driven by the competition between the eddy rectification process and the potential vorticity anomalies induced by changes of the intergyre transport.

Corresponding author address: P. Berloff, Clark Laboratory, Woods Hole Oceanographic Institution, MS 29, Woods Hole, MA 02543. Email: pberloff@whoi.edu

Abstract

Intrinsic low-frequency variability is studied in the idealized, quasigeostrophic, midlatitude, wind-driven ocean gyres operating at large Reynolds number. A robust decadal variability mode driven by the transient mesoscale eddies is found and analyzed. The variability is a turbulent phenomenon, which is driven by the competition between the eddy rectification process and the potential vorticity anomalies induced by changes of the intergyre transport.

Corresponding author address: P. Berloff, Clark Laboratory, Woods Hole Oceanographic Institution, MS 29, Woods Hole, MA 02543. Email: pberloff@whoi.edu

Save
  • Armenio, V., U. Piomelli, and V. Fiorotto, 1999: Effect of the subgrid scales on particle motion. Phys. Fluids A, 11 , 3030–3042.

  • Berloff, P., 2005a: On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans, 38 , 123–146.

  • Berloff, P., 2005b: On rectification of randomly forced flows. J. Mar. Res., 63 , 497–527.

  • Berloff, P., and S. Meacham, 1997: The dynamics of an equivalent-barotropic model of the wind-driven circulation. J. Mar. Res., 55 , 523–563.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and S. Meacham, 1998: The dynamics of a simple baroclinic model of the wind-driven circulation. J. Phys. Oceanogr., 28 , 361–388.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and J. McWilliams, 1999a: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29 , 1925–1949.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and J. McWilliams, 1999b: Quasigeostrophic dynamics of the western boundary current. J. Phys. Oceanogr., 29 , 2607–2634.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., J. McWilliams, and A. Bracco, 2002: Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32 , 764–796.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Kravtsov, W. Dewar, and J. McWilliams, 2007: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37 , 1103–1121.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., S. Dean, M. O’Keefe, and A. Sawdey, 1995: A comparison of data-parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM). Parallel Comput., 21 , 1695–1720.

    • Search Google Scholar
    • Export Citation
  • Bower, A., and S. Lozier, 1994: A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24 , 1399–1418.

  • Bryan, K., 1963: A numerical investigation of a nonlinear model of a wind-driven ocean. J. Atmos. Sci., 20 , 594–606.

  • Cessi, P., and G. Ierley, 1995: Symmetry-breaking multiple equilibria in quasi-geostrophic wind-driven flows. J. Phys. Oceanogr., 25 , 1196–1205.

    • Search Google Scholar
    • Export Citation
  • Dewar, W., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33 , 1057–1081.

  • Dijkstra, H., and C. Katsman, 1997: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophys. Astrophys. Fluid Dyn., 85 , 195–232.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., and P. Rhines, 1983: Waves and circulation driven by oscillatory winds in an idealized ocean basin. Geophys. Astrophys. Fluid Dyn., 25 , 1–63.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., J. McWilliams, and P. Gent, 1992: Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J. Phys. Oceanogr., 22 , 882–902.

    • Search Google Scholar
    • Export Citation
  • Hansen, D., and H. Bezdek, 1996: On the nature of decadal anomalies in North Atlantic sea surface temperature. J. Geophys. Res., 101 , 8749–8758.

    • Search Google Scholar
    • Export Citation
  • Hasselman, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28 , 289–305.

  • Hogg, A., P. Killworth, J. Blundell, and W. Dewar, 2005: Mechanisms of decadal variability of the wind-driven ocean circulation. J. Phys. Oceanogr., 35 , 512–531.

    • Search Google Scholar
    • Export Citation
  • Hogg, A., W. Dewar, P. Killworth, and J. Blundell, 2006: Decadal variability of the midlatitude climate system driven by the ocean circulation. J. Climate, 19 , 1149–1166.

    • Search Google Scholar
    • Export Citation
  • Holland, W., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasigeostrophic model. J. Phys. Oceanogr., 8 , 363–392.

    • Search Google Scholar
    • Export Citation
  • Ierley, G., and V. Sheremet, 1995: Multiple solutions and advection-dominated flows in the wind-driven circulation. Part I: Slip. J. Mar. Res., 53 , 703–737.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25 , 764–786.

    • Search Google Scholar
    • Export Citation
  • Katsman, C., S. Drijfhout, and H. Dijkstra, 2001: The interaction of a deep western boundary current and the wind-driven gyres as a cause for low-frequency variability. J. Phys. Oceanogr., 31 , 2321–2339.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141–157.

    • Search Google Scholar
    • Export Citation
  • Leonov, D., 2005: Effects of finite amplitude bottom topography on ocean variability. Ph.D. thesis, The Florida State University, 61 pp.

  • McIntyre, M., 1970: On the non-separable baroclinic parallel flow instability problem. J. Fluid Mech., 40 , 273–306.

  • McIntyre, M., 2000: On global-scale atmospheric circulations. Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, G. Batchelor, H. Moffat, and M. Worster, Eds., Cambridge University Press, 557–624.

    • Search Google Scholar
    • Export Citation
  • Meacham, S., 2000: Low-frequency variability in the wind-driven circulation. J. Phys. Oceanogr., 30 , 269–293.

  • Meacham, S., and P. Berloff, 1997a: Barotropic, wind-driven circulation in a small basin. J. Mar. Res., 55 , 407–451.

  • Meacham, S., and P. Berloff, 1997b: Instabilities of a steady, barotropic, wind-driven circulation. J. Mar. Res., 55 , 885–913.

  • Nadiga, B., and B. Luce, 2001: Global bifurcation of Shilnikov type in a double-gyre ocean model. J. Phys. Oceanogr., 31 , 2669–2690.

    • Search Google Scholar
    • Export Citation
  • Nauw, J., and H. Dijkstra, 2001: The origin of low-frequency variability of double-gyre wind-driven flows. J. Mar. Res., 59 , 567–597.

    • Search Google Scholar
    • Export Citation
  • Nauw, J., H. Dijkstra, and E. Simonnet, 2004: Regimes of low-frequency variability in a three-layer quasi-geostrophic ocean model. J. Mar. Res., 62 , 685–720.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp.

  • Preisendorfer, R., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Primeau, F., 2002: Multiple equilibria and low-frequency variability of the wind-driven ocean circulation. J. Phys. Oceanogr., 32 , 2236–2256.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33 , 2465–2482.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and T. Joyce, 1992: Interannual variability in the mid- and low-latitude western North Pacific. J. Phys. Oceanogr., 22 , 1062–1079.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30 , 2124–2137.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35 , 2090–2103.

    • Search Google Scholar
    • Export Citation
  • Sheremet, V., G. Ierley, and V. Kamenkovich, 1997: Eigenanalysis of the two-dimensional wind-driven ocean circulation problem. J. Mar. Res., 55 , 57–92.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., 2005: Quantization of the low-frequency variability of the double-gyre circulation. J. Phys. Oceanogr., 35 , 2268–2290.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., and H. Dijkstra, 2002: Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr., 32 , 1747–1762.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang, 2003a: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solutions. J. Phys. Oceanogr., 33 , 712–728.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang, 2003b: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions. J. Phys. Oceanogr., 33 , 729–752.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part II: Low-frequency internal oscillations. J. Phys. Oceanogr., 26 , 2169–2182.

    • Search Google Scholar
    • Export Citation
  • Speich, S., H. Dijkstra, and M. Ghil, 1995: Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation. Nonlinear Proc. Geophys., 2 , 241–268.

    • Search Google Scholar
    • Export Citation
  • Starr, V., 1968: Physics of Negative Viscosity Phenomena. McGraw-Hill, 256 pp.

  • Weaver, A., J. Marotzke, P. Cummins, and E. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23 , 39–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 615 318 4
PDF Downloads 346 95 1