Ocean and Atmosphere Storm Tracks: The Role of Eddy Vorticity Forcing

Richard G. Williams Department of Earth and Ocean Sciences, University of Liverpool, Liverpool, United Kingdom

Search for other papers by Richard G. Williams in
Current site
Google Scholar
PubMed
Close
,
Chris Wilson Department of Earth and Ocean Sciences, University of Liverpool, and Proudman Oceanography Laboratory, Liverpool, United Kingdom

Search for other papers by Chris Wilson in
Current site
Google Scholar
PubMed
Close
, and
Chris W. Hughes Proudman Oceanography Laboratory, Liverpool, United Kingdom

Search for other papers by Chris W. Hughes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Signatures of eddy variability and vorticity forcing are diagnosed in the atmosphere and ocean from weather center reanalysis and altimetric data broadly covering the same period, 1992–2002. In the atmosphere, there are localized regions of eddy variability referred to as storm tracks. At the entrance of the storm track the eddies grow, providing a downgradient heat flux and accelerating the mean flow eastward. At the exit and downstream of the storm track, the eddies decay and instead provide a westward acceleration. In the ocean, there are similar regions of enhanced eddy variability along the extension of midlatitude boundary currents and the Antarctic Circumpolar Current. Within these regions of high eddy kinetic energy, there are more localized signals of high Eady growth rate and downgradient eddy heat fluxes. As in the atmosphere, there are localized regions in the Southern Ocean where ocean eddies provide statistically significant vorticity forcing, which acts to accelerate the mean flow eastward, provide torques to shift the jet, or decelerate the mean flow. These regions of significant eddy vorticity forcing are often associated with gaps in the topography, suggesting that the ocean jets are being locally steered by topography. The eddy forcing may also act to assist in the separation of boundary currents, although the diagnostics of this study suggest that this contribution is relatively small when compared with the advection of planetary vorticity by the time-mean flow.

Corresponding author address: Richard Williams, Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP, United Kingdom. Email: ric@liverpool.ac.uk

Abstract

Signatures of eddy variability and vorticity forcing are diagnosed in the atmosphere and ocean from weather center reanalysis and altimetric data broadly covering the same period, 1992–2002. In the atmosphere, there are localized regions of eddy variability referred to as storm tracks. At the entrance of the storm track the eddies grow, providing a downgradient heat flux and accelerating the mean flow eastward. At the exit and downstream of the storm track, the eddies decay and instead provide a westward acceleration. In the ocean, there are similar regions of enhanced eddy variability along the extension of midlatitude boundary currents and the Antarctic Circumpolar Current. Within these regions of high eddy kinetic energy, there are more localized signals of high Eady growth rate and downgradient eddy heat fluxes. As in the atmosphere, there are localized regions in the Southern Ocean where ocean eddies provide statistically significant vorticity forcing, which acts to accelerate the mean flow eastward, provide torques to shift the jet, or decelerate the mean flow. These regions of significant eddy vorticity forcing are often associated with gaps in the topography, suggesting that the ocean jets are being locally steered by topography. The eddy forcing may also act to assist in the separation of boundary currents, although the diagnostics of this study suggest that this contribution is relatively small when compared with the advection of planetary vorticity by the time-mean flow.

Corresponding author address: Richard Williams, Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP, United Kingdom. Email: ric@liverpool.ac.uk

Save
  • Blackmon, M. L., J. M. Wallace, N-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5 , 11811201.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. I. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433460.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3357.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21 , 499528.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27 , 22192232.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1997: Localized coupling between surface and bottom intensified flow over topography. J. Phys. Oceanogr., 27 , 911988.

  • Holopainen, E. O., and A. H. Oort, 1981: On the role of large-scale transient eddies in the maintenance of the vorticity and enstrophy of the time-mean atmospheric flow. J. Atmos. Sci., 38 , 270280.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1983: Modelling of transient eddies and their feedback on the mean flow. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 169–199.

  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: The nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110 .C11008, doi:10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and E. R. Ash, 2001: Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res., 106 , 27132722.

  • Illari, L., 1984: A diagnostic study of the potential vorticity in a warm blocking anticyclone. J. Atmos. Sci., 41 , 35183526.

  • Illari, L., and J. C. Marshall, 1983: On the interpretation of eddy fluxes during a blocking episode. J. Atmos. Sci., 40 , 22322242.

  • Inatsu, M., and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17 , 48824892.

  • Johnson, T. J., R. H. Stewart, C. K. Shum, and B. D. Tapley, 1992: Distribution of Reynolds stress carried by mesoscale variability in the Antarctic Circumpolar Current. Geophys. Res. Lett., 19 , 12011204.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1979: The observed structure of tropospheric stationary waves and the local balances of vorticity and heat. J. Atmos. Sci., 36 , 9961016.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and P. Cornillon, 1996: Propagation of Gulf Stream meanders between 74°W and 70°W. J. Phys. Oceanogr., 26 , 205224.

  • Lee, W-J., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. J. Atmos. Sci., 53 , 17371750.

  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37 , 16481654.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., and P. P. Niiler, 2005: Hybrid decade-mean global sea level with mesoscale resolution. Recent Advances in Marine Science and Technology, N. Saxena, Ed., PACON International, 55–59.

  • Müller, P., and C. Frankignoul, 1981: Direct atmospheric forcing of geostrophic eddies. J. Phys. Oceanogr., 11 , 287308.

  • Nakamura, M., and Y. Chao, 2000: Characteristics of three-dimensional quasi-geostrophic transient eddy propagation in the vicinity of a simulated Gulf Stream. J. Geophys. Res., 105 , 1138511406.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1998: On the poleward deflection of storm tracks. J. Atmos. Sci., 55 , 25772602.

  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Primeau, F., and P. Cessi, 2001: Coupling between wind-driven currents and midlatitude storm tracks. J. Climate, 14 , 12431261.

  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension System and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69 , 417443.

  • Rhines, P. B., 1977: The dynamics of unsteady currents. The Sea, E. D. Goldberg, Ed., Marine Modeling, Vol. 6, John Wiley and Sons, 189–318.

  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc., 109 , 737761.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1994: Dispersion of Rossby waves in the presence of zonally-varying topography. Geophys. Astrophys. Fluid Dyn., 75 , 107130.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., D. P. Chambers, S. Bettadpur, and J. C. Ries, 2003: Large scale ocean circulation from the GRACE GGM01 Geoid. Geophys. Res. Lett., 30 .2163, doi:10.1029/2003GL018622.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Watts, D. R., and W. E. Johns, 1982: Gulf Stream meanders: Observations on propagation and growth. J. Geophys. Res., 87 , 94679476.

  • Wilson, C., and R. G. Williams, 2006: When are eddy tracer fluxes directed down gradient? J. Phys. Oceanogr., 36 , 189201.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1104 462 16
PDF Downloads 742 244 15