Impact of Labrador Sea Convection on the North Atlantic Meridional Overturning Circulation

Robert S. Pickart Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Robert S. Pickart in
Current site
Google Scholar
PubMed
Close
and
Michael A. Spall Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Michael A. Spall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The overturning and horizontal circulations of the Labrador Sea are deduced from a composite vertical section across the basin. The data come from the late-spring/early-summer occupations of the World Ocean Circulation Experiment (WOCE) AR7W line, during the years 1990–97. This time period was chosen because it corresponded to intense wintertime convection—the deepest and densest in the historical record—suggesting that the North Atlantic meridional overturning circulation (MOC) would be maximally impacted. The composite geostrophic velocity section was referenced using a mean lateral velocity profile from float data and then subsequently adjusted to balance mass. The analysis was done in depth space to determine the net sinking that results from convection and in density space to determine the diapycnal mass flux (i.e., the transformation of light water to Labrador Sea Water). The mean overturning cell is calculated to be 1 Sv (1 Sv ≡ 106 m3 s−1), as compared with a horizontal gyre of 18 Sv. The total water mass transformation is 2 Sv. These values are consistent with recent modeling results. The diagnosed heat flux of 37.6 TW is found to result predominantly from the horizontal circulation, both in depth space and density space. These results suggest that the North Atlantic MOC is not largely impacted by deep convection in the Labrador Sea.

Corresponding author address: Robert S. Pickart, Department of Physical Oceanography, Woods Hole Oceanographic Institution, MS 21, Woods Hole, MA 02543. Email: rpickart@whoi.edu

Abstract

The overturning and horizontal circulations of the Labrador Sea are deduced from a composite vertical section across the basin. The data come from the late-spring/early-summer occupations of the World Ocean Circulation Experiment (WOCE) AR7W line, during the years 1990–97. This time period was chosen because it corresponded to intense wintertime convection—the deepest and densest in the historical record—suggesting that the North Atlantic meridional overturning circulation (MOC) would be maximally impacted. The composite geostrophic velocity section was referenced using a mean lateral velocity profile from float data and then subsequently adjusted to balance mass. The analysis was done in depth space to determine the net sinking that results from convection and in density space to determine the diapycnal mass flux (i.e., the transformation of light water to Labrador Sea Water). The mean overturning cell is calculated to be 1 Sv (1 Sv ≡ 106 m3 s−1), as compared with a horizontal gyre of 18 Sv. The total water mass transformation is 2 Sv. These values are consistent with recent modeling results. The diagnosed heat flux of 37.6 TW is found to result predominantly from the horizontal circulation, both in depth space and density space. These results suggest that the North Atlantic MOC is not largely impacted by deep convection in the Labrador Sea.

Corresponding author address: Robert S. Pickart, Department of Physical Oceanography, Woods Hole Oceanographic Institution, MS 21, Woods Hole, MA 02543. Email: rpickart@whoi.edu

Save
  • Bacon, S., W. J. Gould, and Y. Jia, 2003: Open-ocean convection in the Irminger Sea. Geophys. Res. Lett., 30 .1246, doi:10.1029/2002GL016271.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and H. L. Bryden, 1997: Observations of an Aguhlas Undercurrent. Deep-Sea Res. I, 44 , 17151724.

  • Böning, C. W., F. O. Bryan, W. R. Holland, and R. Doscher, 1996: Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 26 , 11421164.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Funk, L. Czeschel, C. Eden, and C. Böning, 2007: Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current. J. Phys. Oceanogr., 37 , 946961.

    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., and W. J. Gould, 2004: Winter conditions in the Irminger Sea observed with profiling floats. J. Mar. Res., 62 , 313336.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., and J. C. Gascard, 1983: The formation of Labrador Sea water. Part I: Large-scale processes. J. Phys. Oceanogr., 13 , 17641778.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, P. P. Niiler, and S. Bacon, 2002: Labrador Sea boundary currents and the fate of the Irminger Sea Water. J. Phys. Oceanogr., 32 , 627647.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, and R. Kwok, 2004: Davis Strait volume, freshwater and heat fluxes. Deep-Sea Res. I, 52 , 519542.

  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic deep water: Sources, rates, and pathways. J. Geophys. Res., 99 , 1231912341.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. R. N. Lazier, J. Meincke, P. B. Rhines, and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38 , 241295.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51 , 728748.

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32 , 33463363.

  • Fanning, A. F., and A. J. Weaver, 1997: A horizontal resolution and parameter sensitivity study of heat transport in an idealized coupled climate model. J. Climate, 10 , 24692478.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., F. A. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34 , 15481570.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29 , 339359.

  • Heywood, K. J., E. L. McDonagh, and M. A. White, 1994: Eddy kinetic energy of the North Atlantic subpolar gyre from satellite altimetry. J. Geophys. Res., 99 , 2252522539.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., M. A. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34 , 19671983.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407 , 6669.

    • Search Google Scholar
    • Export Citation
  • Lazier, J. R. N., and D. G. Wright, 1993: Annual velocity variations in the Labrador Current. J. Phys. Oceanogr., 23 , 659678.

  • Lazier, J. R. N., A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res., 49 , 18191835.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. N. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr., 29 , 20652098.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. R. N. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59 , 75176.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13 , 32393260.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., B. A. de Cuevas, A. C. Coward, H. L. Bryden, and M. Alvarez, 2005: Thermohaline circulation at three key sections in the North Atlantic over 1985–2002. Geophys. Res. Lett., 32 .L10604, doi:10.1029/2004GL022281.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res., 43 , 769806.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., and S. Häkkinen, 1999: On the relationship between dense water formation and the “Meridional Overturning Cell” in the North Atlantic Ocean. Deep-Sea Res. I, 46 , 877894.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1992: Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr., 29 , 283383.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and L. D. Talley, 1984: Warm-to-cold conversion in the northern North Atlantic Ocean. J. Phys. Oceanogr., 14 , 922935.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J-M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428 , 834837.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18 , 37133725.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., 1995: Gulf Stream–generated topographic Rossby Waves. J. Phys. Oceanogr., 25 , 574586.

  • Pickart, R. S., and W. M. Smethie Jr., 1993: How does the Deep Western Boundary Current cross the Gulf Stream? J. Phys. Oceanogr., 23 , 26022616.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and W. M. Smethie Jr., 1998: Temporal evolution of the Deep Western Boundary Current where it enters the sub-tropical domain. Deep-Sea Res., 45 , 10531083.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res. I, 44 , 10251054.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32 , 428457.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff, 2003a: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424 , 152156.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., F. Straneo, and G. W. K. Moore, 2003b: Is Labrador Sea Water formed in the Irminger Basin? Deep-Sea Res. I, 50 , 2352.

    • Search Google Scholar
    • Export Citation
  • Prater, M. D., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32 , 411427.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1997: Risk of sea-change in the Atlantic. Nature, 388 , 825826.

  • Reid, J. L., 1994: On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports. Prog. Oceanogr., 33 , 192.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383400.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2002: Labrador Sea water: Pathways, CFC-inventory, and formation rates. J. Phys. Oceanogr., 32 , 648665.

  • Ross, C. K., 1992: Moored current meter measurements across Davis Strait. NAFO SCR Doc. 92/70, 8 pp.

  • Schmitz, W. J., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Smethie Jr., W. M., and R. A. Fine, 2001: Rates of North Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. I, 48 , 189215.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2003: On the thermohaline circulation in flat bottom marginal seas. J. Mar. Res., 61 , 125.

  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34 , 11971213.

  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31 , 810826.

  • Speer, K. G., H-J. Isemer, and A. Biastoch, 1995: Water mass formation from revised COADS data. J. Phys. Oceanogr., 25 , 24442457.

  • Stocker, T. F., and A. Schmittner, 1997: Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 388 , 862865.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36 , 606628.

    • Search Google Scholar
    • Export Citation
  • Swift, J. H., 1984: The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic. Deep-Sea Res., 31 , 13391355.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, G. W. K. Moore, and M. H. Ribergaard, 2007: Winter mixed-layer development in the central Irminger Sea: The effect of strong intermittent wind events. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1976: On the North Atlantic Circulation. Vol. 6, The Johns Hopkins Oceanographic Studies, The Johns Hopkins University Press, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Wright, W. R., 1972: Northern sources of energy for the deep Atlantic. Deep-Sea Res., 19 , 865877.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2143 492 168
PDF Downloads 984 200 24