Eddy Modulation of Air–Sea Interaction and Convection

Ivana Cerovečki Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Ivana Cerovečki in
Current site
Google Scholar
PubMed
Close
and
John Marshall Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Eddy modulation of the air–sea interaction and convection that occurs in the process of mode water formation is analyzed in simulations of a baroclinically unstable wind- and buoyancy-driven jet. The watermass transformation analysis of Walin is used to estimate the formation rate of mode water and to characterize the role of eddies in that process. It is found that diabatic eddy heat flux divergences in the mixed layer are comparable in magnitude, but of opposite sign, to the surface air–sea heat flux and largely cancel the direct effect of buoyancy loss to the atmosphere. The calculations suggest that mode water formation estimates based on climatological air–sea heat flux data and outcrops, which do not fully resolve ocean eddies, may neglect a large opposing term in the heat budget and are thus likely to significantly overestimate true formation rates. In Walin’s watermass transformation framework, this manifests itself as a sensitivity of formation rate estimates to the averaging period over which the outcrops and air–sea fluxes are subjected. The key processes are described in terms of a transformed Eulerian-mean formalism in which eddy-induced mean flow tends to cancel the Eulerian-mean flow, resulting in weaker residual mean flow, subduction, and mode water formation rates.

Corresponding author address: Ivana Cerovečki, Physical Oceanography Research Division, Scripps Institute of Oceanography, University of California at San Diego, Nierenberg Hall, Room 345, MC 0230, La Jolla, CA 92093-0230. Email: icerovec@ucsd.edu

Abstract

Eddy modulation of the air–sea interaction and convection that occurs in the process of mode water formation is analyzed in simulations of a baroclinically unstable wind- and buoyancy-driven jet. The watermass transformation analysis of Walin is used to estimate the formation rate of mode water and to characterize the role of eddies in that process. It is found that diabatic eddy heat flux divergences in the mixed layer are comparable in magnitude, but of opposite sign, to the surface air–sea heat flux and largely cancel the direct effect of buoyancy loss to the atmosphere. The calculations suggest that mode water formation estimates based on climatological air–sea heat flux data and outcrops, which do not fully resolve ocean eddies, may neglect a large opposing term in the heat budget and are thus likely to significantly overestimate true formation rates. In Walin’s watermass transformation framework, this manifests itself as a sensitivity of formation rate estimates to the averaging period over which the outcrops and air–sea fluxes are subjected. The key processes are described in terms of a transformed Eulerian-mean formalism in which eddy-induced mean flow tends to cancel the Eulerian-mean flow, resulting in weaker residual mean flow, subduction, and mode water formation rates.

Corresponding author address: Ivana Cerovečki, Physical Oceanography Research Division, Scripps Institute of Oceanography, University of California at San Diego, Nierenberg Hall, Room 345, MC 0230, La Jolla, CA 92093-0230. Email: icerovec@ucsd.edu

Save
  • Andrews, D. G., J. R. Holton, and C. B. Loevy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Böning, C. W., and R. G. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22 , 361381.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1985: An eddy resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15 , 13121324.

  • Danabasoglu, G., J. C. Mc Williams, and P. R. Gent, 1994: The role of mesoscale tracer transport in the global ocean circulation. Science, 264 , 11231126.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1986: On the potential vorticity structure of weakly ventilated isopycnals: A theory of subtropical mode water maintenance. J. Phys. Oceanogr., 16 , 12041216.

    • Search Google Scholar
    • Export Citation
  • Dong, S., and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Geophys. Res., 99 , 1848118499.

    • Search Google Scholar
    • Export Citation
  • Donners, J., S. S. Drijfhout, and W. Hazeleger, 2005: Water mass transformation and subduction in the North Atlantic. J. Phys. Oceanogr., 35 , 18411860.

    • Search Google Scholar
    • Export Citation
  • Doos, K., and D. J. Webb, 1994: The Deacon cell and other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

  • Drijfhout, S. S., 1994a: Heat transport by mesoscale eddies in an ocean circulation model. J. Phys. Oceanogr., 24 , 353369.

  • Drijfhout, S. S., 1994b: Sensitivity of eddy-induced heat transport to diabatic forcing. J. Geophys. Res, 99 , 1848118499.

  • Drijfhout, S. S., and F. H. Walsteijn, 1998: Eddy-induced heat transport in a coupled ocean–atmosphere anomaly model. J. Phys. Oceanogr., 28 , 250265.

    • Search Google Scholar
    • Export Citation
  • Ebbesmeyer, C. C., and E. J. Lindstrom, 1986: Structure and origin of 18° Water observed during the POLYMODE Local Dynamics Experiment. J. Phys. Oceanogr., 16 , 443453.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and A. Tandon, 1997: The effects on water mass formation of surface mixed layer time-dependence and entrainment fluxes. Deep-Sea Res., 44 , 19912006.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass formation and the surface buoyancy flux, with application to Phillips’ Red Sea model. J. Phys. Oceanogr., 25 , 16961705.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler and J. Church, Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and S. S. Drijfhout, 1998: Mode water variability in a model of the subtropical gyre: Response to anomalous forcing. J. Phys. Oceanogr., 28 , 266288.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and S. S. Drijfhout, 1999: Stochastically forced mode water variability. J. Phys. Oceanogr., 29 , 17721786.

  • Hazeleger, W., and S. S. Drijfhout, 2000: Eddy subduction in a model of the subtropical gyre. J. Phys. Oceanogr., 30 , 677695.

  • Huang, R. X., 1989: Sensitivity of a multilayered oceanic general circulation model to the sea surface thermal boundary condition. J. Geophys. Res., 94 , 1801118021.

    • Search Google Scholar
    • Export Citation
  • Jenkins, W. J., 1982: On the climate of a subtropical ocean gyre: Decade timescale variations in water mass renewal in the Sargasso Sea. J. Mar. Res., 40 , (Suppl.). 265290.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the Antarctic Circumpolar Current from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., 2004: The relationship between oceanic heat transport and surface fluxes in the western North Pacific: 1970–2000. J. Climate, 17 , 573588.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation and parameterization of deep convective plumes by mixing. J. Geophys. Res., 101 , 1817518182.

    • Search Google Scholar
    • Export Citation
  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization, and the equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35 , 175187.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y-O., and S. C. Riser, 2005: The general circulation of the western subtropical North Atlantic observed by using profiling floats. J. Geophys. Res., 110 .C10012, doi:10.1029/2005JC002909.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., and A. L. New, 1996: Modeling 18° Water variability. J. Phys. Oceanogr., 26 , 10591080.

  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55 , 201222.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling “thermodynamic” and “dynamic” methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perleman, and A. Adcroft, 1997a: Hydrostatic, quasi-hydrostatic, and non hydrostatic ocean modeling. J. Geophys. Res., 102 , 57335752.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perleman, and C. Heisy, 1997b: A finite volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1982: The subtropical recirculation of mode waters. J. Mar. Res., 40 , (Suppl.). 427464.

  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26 , 16551660.

  • Paiva, A. M., and E. P. Chassignet, 2002: North Atlantic modeling of low-frequency variability in mode water formation. J. Phys. Oceanogr., 32 , 26662680.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35 , 165174.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1994: Jets. Chaos, 4 , 313341.

  • Schroeder, E. H., H. Stommel, D. W. Menzel, and W. J. Sutcliffe, 1959: Climate stability of eighteen degree water at Bermuda. J. Geophys. Res., 64 , 363366.

    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic. J. Phys. Oceanogr., 22 , 93104.

  • Stommel, H. M., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophyc flow. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. E. Raymer, 1982: Eighteen degree water variability. J. Mar. Res., 40 , (Suppl.). 725775.

  • Tandon, A., and K. Zahariev, 2001: Quantifying the role of mixed layer entrainment for water mass transformation in the North Atlantic. J. Phys. Oceanogr., 31 , 11201131.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34 , 187195.

  • Worthington, L. V., 1959: The 18° Water in Sargasso Sea. Deep-Sea Res., 5 , 297305.

  • Worthington, L. V., 1976: On the North Atlantic Circulation. John Hopkins Oceanographic Studies, Vol. 6, The Johns Hopkins University Press, 110 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 60 7
PDF Downloads 136 39 7