On Quadratic Bottom Drag, Geostrophic Turbulence, and Oceanic Mesoscale Eddies

Brian K. Arbic Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Brian K. Arbic in
Current site
Google Scholar
PubMed
Close
and
Robert B. Scott Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Robert B. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many investigators have idealized the oceanic mesoscale eddy field with numerical simulations of geostrophic turbulence forced by a horizontally homogeneous, baroclinically unstable mean flow. To date such studies have employed linear bottom Ekman friction (hereinafter, linear drag). This paper presents simulations of two-layer baroclinically unstable geostrophic turbulence damped by quadratic bottom drag, which is generally thought to be more realistic. The goals of the paper are 1) to describe the behavior of quadratically damped turbulence as drag strength changes, using previously reported behaviors of linearly damped turbulence as a point of comparison, and 2) to compare the eddy energies, baroclinicities, and horizontal scales in both quadratic and linear drag simulations with observations and to discuss the constraints these comparisons place on the form and strength of bottom drag in the ocean. In both quadratic and linear drag simulations, large barotropic eddies develop with weak damping, large equivalent barotropic eddies develop with strong damping, and the comparison in goal 2 above is closest when the nondimensional friction strength parameter is of order 1. Typical values of the quadratic drag coefficient (cd ∼ 0.0025) and of boundary layer depths (Hb ∼ 50 m) imply that the quadratic friction strength parameter cdLd/Hb, where Ld is the deformation radius, may indeed be of order 1 in the ocean. Model eddies are realistic over a wider range of friction strengths when drag is quadratic, because of a reduced sensitivity to friction strength in that case. The quadratic parameter is independent of the mean shear, in contrast to the linear parameter. Plots of eddy length scales, computed from satellite altimeter data, versus mean shear and versus rough estimates of the friction strength parameters suggest that both linear and quadratic bottom drag may be active in the ocean. Topographic wave drag contains terms that are linear in the bottom flow, thus providing some justification for the use of linear bottom drag in models.

Corresponding author address: Dr. Brian K. Arbic, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, J.J. Pickle Research Campus, Bldg. 196 (ROC), 10100 Burnet Road (R2200), Austin, TX 78758–4445. Email: arbic@ig.utexas.edu

Abstract

Many investigators have idealized the oceanic mesoscale eddy field with numerical simulations of geostrophic turbulence forced by a horizontally homogeneous, baroclinically unstable mean flow. To date such studies have employed linear bottom Ekman friction (hereinafter, linear drag). This paper presents simulations of two-layer baroclinically unstable geostrophic turbulence damped by quadratic bottom drag, which is generally thought to be more realistic. The goals of the paper are 1) to describe the behavior of quadratically damped turbulence as drag strength changes, using previously reported behaviors of linearly damped turbulence as a point of comparison, and 2) to compare the eddy energies, baroclinicities, and horizontal scales in both quadratic and linear drag simulations with observations and to discuss the constraints these comparisons place on the form and strength of bottom drag in the ocean. In both quadratic and linear drag simulations, large barotropic eddies develop with weak damping, large equivalent barotropic eddies develop with strong damping, and the comparison in goal 2 above is closest when the nondimensional friction strength parameter is of order 1. Typical values of the quadratic drag coefficient (cd ∼ 0.0025) and of boundary layer depths (Hb ∼ 50 m) imply that the quadratic friction strength parameter cdLd/Hb, where Ld is the deformation radius, may indeed be of order 1 in the ocean. Model eddies are realistic over a wider range of friction strengths when drag is quadratic, because of a reduced sensitivity to friction strength in that case. The quadratic parameter is independent of the mean shear, in contrast to the linear parameter. Plots of eddy length scales, computed from satellite altimeter data, versus mean shear and versus rough estimates of the friction strength parameters suggest that both linear and quadratic bottom drag may be active in the ocean. Topographic wave drag contains terms that are linear in the bottom flow, thus providing some justification for the use of linear bottom drag in models.

Corresponding author address: Dr. Brian K. Arbic, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, J.J. Pickle Research Campus, Bldg. 196 (ROC), 10100 Burnet Road (R2200), Austin, TX 78758–4445. Email: arbic@ig.utexas.edu

Save
  • Arbic, B. K., and G. R. Flierl, 2003: Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence. Phys. Fluids, 15 , 21772189.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. R. Flierl, 2004a: Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr., 34 , 7793.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. R. Flierl, 2004b: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34 , 22572273.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., G. R. Flierl, and R. B. Scott, 2007: Cascade inequalities for forced–dissipated geostrophic turbulence. J. Phys. Oceanogr., 37 , 14701487.

    • Search Google Scholar
    • Export Citation
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83 , 19711979.

  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433460.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World ocean atlas 2001: Objective analyses, data statistics, and figures, CD-ROM documentation. Ocean Climate Laboratory, National Oceanographic Data Center Internal Report 17, 21 pp.

  • Danilov, S. D., and D. Gurarie, 2000: Quasi two-dimensional turbulence. Phys.-Usp., 43 , 863900.

  • Danilov, S. D., F. V. Dolzhanskii, and V. A. Krymov, 1994: Quasi two-dimensional hydrodynamics and problems in two-dimensional turbulence. Chaos, 4 , 299304.

    • Search Google Scholar
    • Export Citation
  • Edwards, K. A., P. MacCready, J. N. Moum, G. Pawlak, J. M. Klymak, and A. Perlin, 2004: Form drag and mixing due to tidal flow past a sharp point. J. Phys. Oceanogr., 34 , 12971312.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2 , 341381.

  • Flierl, G. R., 1994: Semicoherent oceanic features. Chaos, 4 , 355367.

  • Fu, L-L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4 , 219246.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62 , 23022315.

  • Garrett, C., P. MacCready, and P. B. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25 , 291323.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., J. S. A. Green, and A. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21 , 499528.

    • Search Google Scholar
    • Export Citation
  • Grianik, N., I. M. Held, K. S. Smith, and G. K. Vallis, 2004: The effects of quadratic drag on the inverse cascade of two-dimensional turbulence. Phys. Fluids, 16 , 7378.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and I. M. Held, 1980: Homogeneous quasigeostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci., 37 , 26442660.

    • Search Google Scholar
    • Export Citation
  • Hardy, G., J. Littlewood, and G. Pólya, 1952: Inequalities. 2d ed. Cambridge University Press, 324 pp.

  • Held, I. M., 1999: The macroturbulence of the troposphere. Tellus, 51A–B , 5970.

  • Held, I. M., and E. O’Brien, 1992: Quasigeostrophic turbulence in a three-layer model: Effects of vertical structure in the mean shear. J. Atmos. Sci., 49 , 18611870.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53 , 946952.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Hoyer, J-M., and R. Sadourny, 1982: Closure modeling of fully developed baroclinic instability. J. Atmos. Sci., 39 , 707721.

  • Hua, B. L., and D. B. Haidvogel, 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43 , 29232936.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., W. Wang, and L. L. Liu, 2006: Decadal variability of wind-energy input to the world ocean. Deep-Sea Res. II, 53 , 3141.

  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Kurapov, A. L., J. S. Allen, G. D. Egbert, and R. N. Miller, 2005: Modeling bottom mixed layer variability on the mid-Oregon shelf during summer upwelling. J. Phys. Oceanogr., 35 , 16291649.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60 , 29072916.

    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25 , 22852297.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and J. H. Trowbridge, 1991: The bottom boundary layer over the northern California shelf. J. Phys. Oceanogr., 21 , 11861201.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15 , 522534.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., G. Dibarboure, and N. Ducet, 2001: Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. J. Atmos. Oceanic Technol., 18 , 12771288.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123 , 101127.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and G. Pawlak, 2001: Stratified flow along a corrugated slope: Separation drag and wave drag. J. Phys. Oceanogr., 31 , 28242839.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1987: An essay on the parameterization of orographic gravity wave drag. Proc. Seminar/Workshop on Observation, Theory and Modeling of Orographic Effects, Vol. 1, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 251–282.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1978: Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn., 10 , 2552.

  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15 , 167211.

  • Scinocca, J. F., and N. A. McFarlane, 2000: The parameterization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126 , 23532393.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., 1999: Geostrophic energetics and the small viscosity behaviour of an idealized ocean circulation model. Ph.D. dissertation, McGill University, 124 pp.

  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35 , 16501666.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37 , 673688.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: Shear dispersion of potential vorticity. J. Phys. Oceanogr., 37 , 10371050.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31 , 554571.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2002: The scales and equilibration of midocean eddies: Forced–dissipated flow. J. Phys. Oceanogr., 32 , 16991720.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. N. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2000: Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res., 58 , 97116.

  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27 , 17431769.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36 , 720738.

  • Thompson, A. F., and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64 , 32143231.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and S. J. Lentz, 1998: Dynamics of the bottom boundary layer on the northern California shelf. J. Phys. Oceanogr., 28 , 20752093.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 1983: On the predictability of quasi-geostrophic flow: The effects of beta and baroclinicity. J. Atmos. Sci., 40 , 1027.

    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., and P. J. Martin, 1978: On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 8 , 557570.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27 , 17701794.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28 , 23322340.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and R. B. Scott, 2008: Subtleties in forcing eddy resolving ocean models with satellite wind data. Ocean Modell., in press.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 545 222 9
PDF Downloads 382 113 4