Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests

X. Capet Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by X. Capet in
Current site
Google Scholar
PubMed
Close
,
J. C. McWilliams Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
M. J. Molemaker Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. J. Molemaker in
Current site
Google Scholar
PubMed
Close
, and
A. F. Shchepetkin Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by A. F. Shchepetkin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In computational simulations of an idealized subtropical eastern boundary upwelling current system, similar to the California Current, a submesoscale transition occurs in the eddy variability as the horizontal grid scale is reduced to O(1) km. This first paper (in a series of three) describes the transition in terms of the emergent flow structure and the associated time-averaged eddy fluxes. In addition to the mesoscale eddies that arise from a primary instability of the alongshore, wind-driven currents, significant energy is transferred into submesoscale fronts and vortices in the upper ocean. The submesoscale arises through surface frontogenesis growing off upwelled cold filaments that are pulled offshore and strained in between the mesoscale eddy centers. In turn, some submesoscale fronts become unstable and develop submesoscale meanders and fragment into roll-up vortices. Associated with this phenomenon are a large vertical vorticity and Rossby number, a large vertical velocity, relatively flat horizontal spectra (contrary to the prevailing view of mesoscale dynamics), a large vertical buoyancy flux acting to restratify the upper ocean, a submesoscale energy conversion from potential to kinetic, a significant spatial and temporal intermittency in the upper ocean, and material exchanges between the surface boundary layer and pycnocline. Comparison with available observations indicates that submesoscale fronts and instabilities occur widely in the upper ocean, with characteristics similar to the simulations.

Corresponding author address: Xavier Capet, IGPP/UCLA, 405 Charles E. Young Dr., Los Angeles, CA 90095-1567. Email: capet@atmos.ucla.edu

Abstract

In computational simulations of an idealized subtropical eastern boundary upwelling current system, similar to the California Current, a submesoscale transition occurs in the eddy variability as the horizontal grid scale is reduced to O(1) km. This first paper (in a series of three) describes the transition in terms of the emergent flow structure and the associated time-averaged eddy fluxes. In addition to the mesoscale eddies that arise from a primary instability of the alongshore, wind-driven currents, significant energy is transferred into submesoscale fronts and vortices in the upper ocean. The submesoscale arises through surface frontogenesis growing off upwelled cold filaments that are pulled offshore and strained in between the mesoscale eddy centers. In turn, some submesoscale fronts become unstable and develop submesoscale meanders and fragment into roll-up vortices. Associated with this phenomenon are a large vertical vorticity and Rossby number, a large vertical velocity, relatively flat horizontal spectra (contrary to the prevailing view of mesoscale dynamics), a large vertical buoyancy flux acting to restratify the upper ocean, a submesoscale energy conversion from potential to kinetic, a significant spatial and temporal intermittency in the upper ocean, and material exchanges between the surface boundary layer and pycnocline. Comparison with available observations indicates that submesoscale fronts and instabilities occur widely in the upper ocean, with characteristics similar to the simulations.

Corresponding author address: Xavier Capet, IGPP/UCLA, 405 Charles E. Young Dr., Los Angeles, CA 90095-1567. Email: capet@atmos.ucla.edu

Save
  • Barnier, B., L. Siefried, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6 , 363380.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., 2000: Using low-resolution winds to deduce fine structure in tracers. Atmos.–Ocean, 38 , 303320.

  • Barth, J., 1994: Short wavelength instabilities on coastal jets and fronts. J. Geophys. Res., 99 , 1609516115.

  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37 , 22282250.

    • Search Google Scholar
    • Export Citation
  • Brink, K., and T. Cowles, 1991: The coastal transition zone program. J. Geophys. Res., 96 , 1463714647.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38 , 4464.

    • Search Google Scholar
    • Export Citation
  • Castaing, B., Y. Gagne, and E. Hopfinger, 1990: Velocity probability density functions of high Reynolds number turbulence. Physica D, 46 , 177200.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., T. P. Mavor, J. A. Barth, and L. C. Breaker, 2006: Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res., 111 .C09026, doi:10.1029/2006JC003541.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28 , 10871095.

  • Da Silva, A., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Denman, K., and M. Abbott, 1988: Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images. J. Geophys. Res., 93 , 67896798.

    • Search Google Scholar
    • Export Citation
  • Dewey, R. K., J. N. Moum, C. A. Paulson, D. R. Caldwell, and S. D. Pierce, 1991: Structure and dynamics of a coastal filament. J. Geophys. Res., 96 , 1488514907.

    • Search Google Scholar
    • Export Citation
  • DiGiacomo, P. M., and B. Holt, 2001: Satellite observations of small coastal ocean eddies in the Southern California Bight. J. Geophys. Res., 106 , 2252122544.

    • Search Google Scholar
    • Export Citation
  • Durski, S., and J. Allen, 2005: Finite-amplitude evolution of instabilities associated with the coastal upwelling front. J. Phys. Oceanogr., 35 , 16061628.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Rudnick, 2000: Thermohaline variability in the upper ocean. J. Geophys. Res., 105 , 1685716883.

  • Flament, P., L. Armi, and L. Washburn, 1985: The evolving structure of an upwelling filament. J. Geophys. Res., 90 , 1176511778.

  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—Cold and warm fronts. J. Atmos. Sci., 36 , 16631680.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Klein, P., A-M. Tréguier, and B. Hua, 1998: Three-dimensional stirring of thermohaline fronts. J. Mar. Res., 56 , 589612.

  • Klein, P., B. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper-ocean turbulence from high-3D-resolution simulations. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14 , 241256.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. F. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3 , 120.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. F. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33 , 753783.

    • Search Google Scholar
    • Export Citation
  • McCreary, J., Y. Fukamachi, and P. Kundu, 1991: A numerical investigation of jets and eddies near an eastern ocean boundary. J. Geophys. Res., 96 , 25152534.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23 , 165182.

  • McWilliams, J. C., 2003: Diagnostic force balance and its limits. Nonlinear Processes in Geophysical Fluid Dynamics: A Tribute to the Scientific Work of Pedro Ripa, O. U. Velasco Fuentes, J. Sheinbaum, and J. Ochoa, Eds., Kluwer Academic, 287–304.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and I. Yavneh, 2001: From stirring to mixing of momentum: Cascades from balanced flows to dissipation in the oceanic interior. From Stirring to Mixing in a Stratified Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 59–66.

  • Miller, P., 2004: Multi-spectral front maps for automatic detection of ocean colour features from SeaWiFS. Int. J. Remote Sens., 25 , 14371442.

    • Search Google Scholar
    • Export Citation
  • Mitchum, G., and A. Clarke, 1986: The frictional nearshore response to forcing by synoptic scale winds. J. Phys. Oceanogr., 16 , 934946.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35 , 15051517.

    • Search Google Scholar
    • Export Citation
  • Müller, P., J. C. McWilliams, and M. J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations, and Models, H. Z. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397–405.

    • Search Google Scholar
    • Export Citation
  • Paduan, J., and P. Niiler, 1990: A Lagrangian description of motion in northern California coastal transition filaments. J. Geophys. Res., 95 , 1809518109.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1978: A nonlinear model of the onset of upwelling. J. Phys. Oceanogr., 8 , 178187.

  • Pollard, R., and L. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22 , 609624.

  • Rudnick, D. L., 1996: Intensive surveys of the Azores Front 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101 , 1629116304.

    • Search Google Scholar
    • Export Citation
  • Saffman, P., 1971: On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Stud. Appl. Math., 50 , 377383.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and C. A. Paulson, 1988: Towed thermistor chain observations of fronts in the subtropical North Pacific. J. Geophys. Res., 93 , 22372246.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126 , 15411580.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9 , 347404.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2006: Computational kernel algorithms for fine-scale, multi-process, long-time oceanic simulations. Handbook of Numerical Analysis: Special Volume: Computational Methods for the Atmosphere and the Oceans, R. Temam and J. Tribbia, Eds., Elsevier, in press.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27 , 17431769.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35 , 24572466.

  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35 , 10861102.

  • Ullman, D. S., and P. C. Cornillon, 2000: Evaluation of front detection methods for satellite-derived SST data using in situ observations. J. Atmos. Oceanic Technol., 17 , 16671675.

    • Search Google Scholar
    • Export Citation
  • Ullman, D. S., P. C. Cornillon, and Z. Shan, 2007: On the characteristics of subtropical fronts in the North Atlantic. J. Geophys. Res., 112 .C01010, doi:10.1029/2006JC003601.

    • Search Google Scholar
    • Export Citation
  • Voorhis, A., and J. Bruce, 1982: Small-scale surface stirring and frontogenesis in the subtropical convergence of the western North Atlantic. Deep-Sea Res., 40 , (Suppl.). 331337.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2496 945 132
PDF Downloads 2247 769 76