Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes

X. Capet Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by X. Capet in
Current site
Google Scholar
PubMed
Close
,
J. C. McWilliams Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
M. J. Molemaker Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. J. Molemaker in
Current site
Google Scholar
PubMed
Close
, and
A. F. Shchepetkin Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by A. F. Shchepetkin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This is the second of three papers investigating the regime transition that occurs in numerical simulations for an idealized, equilibrium, subtropical, eastern boundary, upwelling current system similar to the California Current. The emergent upper-ocean submesoscale fronts are analyzed from phenomenological and dynamical perspectives, using a combination of composite averaging and separation of distinctive subregions of the flow. The initiating dynamical process for the transition is near-surface frontogenesis. The frontal behavior is similar to both observed meteorological surface fronts and solutions of the approximate dynamical model called surface dynamics (i.e., uniform interior potential vorticity q and diagnostic force balance) in the intensification of surface density gradients and secondary circulations in response to a mesoscale strain field. However, there are significant behavioral differences compared to the surface-dynamics model. Wind stress acts on fronts through nonlinear Ekman transport and creation and destruction of potential vorticity. The strain-induced frontogenesis is disrupted by vigorous submesoscale frontal instabilities that in turn lead to secondary frontogenesis events, submesoscale vortices, and excitation of even smaller-scale flows. Intermittent, submesoscale breakdown of geostrophic and gradient-wind force balance occurs during the intense frontogenesis and frontal-instability events.

Corresponding author address: Xavier Capet, IGPP/UCLA, 405 Charles E. Young Dr., Los Angeles, CA 90095-1567. Email: capet@atmos.ucla.edu

Abstract

This is the second of three papers investigating the regime transition that occurs in numerical simulations for an idealized, equilibrium, subtropical, eastern boundary, upwelling current system similar to the California Current. The emergent upper-ocean submesoscale fronts are analyzed from phenomenological and dynamical perspectives, using a combination of composite averaging and separation of distinctive subregions of the flow. The initiating dynamical process for the transition is near-surface frontogenesis. The frontal behavior is similar to both observed meteorological surface fronts and solutions of the approximate dynamical model called surface dynamics (i.e., uniform interior potential vorticity q and diagnostic force balance) in the intensification of surface density gradients and secondary circulations in response to a mesoscale strain field. However, there are significant behavioral differences compared to the surface-dynamics model. Wind stress acts on fronts through nonlinear Ekman transport and creation and destruction of potential vorticity. The strain-induced frontogenesis is disrupted by vigorous submesoscale frontal instabilities that in turn lead to secondary frontogenesis events, submesoscale vortices, and excitation of even smaller-scale flows. Intermittent, submesoscale breakdown of geostrophic and gradient-wind force balance occurs during the intense frontogenesis and frontal-instability events.

Corresponding author address: Xavier Capet, IGPP/UCLA, 405 Charles E. Young Dr., Los Angeles, CA 90095-1567. Email: capet@atmos.ucla.edu

Save
  • Barth, J., 1994: Short wavelength instabilities on coastal jets and fronts. J. Geophys. Res., 99 , 1609516115.

  • Bishop, C., 1993: On the behavior of baroclinic waves undergoing horizontal deformation. II: Error-bound amplification and Rossby wave diagnostics. Quart. J. Roy. Meteor. Soc., 119 , 241267.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35 , 774783.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37 , 22282250.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38 , 2943.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., T. P. Mavor, J. A. Barth, and L. C. Breaker, 2006: Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res., 111 .C09026, doi:10.1029/2006JC003541.

    • Search Google Scholar
    • Export Citation
  • Celani, A., M. Cencini, A. Mazzino, and M. Vergassola, 2004: Active and passive tracers face to face. New J. Phys., 6 .72, doi:10.1088/1367-2630/6/1/072. [Available online at http://www.iop.org/EJ/article/1367-2630/6/1/072/njp4_1_072.html.].

    • Search Google Scholar
    • Export Citation
  • Dritschel, D., P. Haynes, M. Juckes, and T. Shepherd, 1991: The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech., 230 , 647665.

    • Search Google Scholar
    • Export Citation
  • Eldevik, T., 2002: On frontal dynamics in two model oceans. J. Phys. Oceanogr., 32 , 29152925.

  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129 , 12731295.

    • Search Google Scholar
    • Export Citation
  • Haine, T., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28 , 634658.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., C. Snyder, and D. J. Muraki, 2002: A new surface model for cyclone–anticyclone asymmetry. J. Atmos. Sci., 59 , 24052420.

    • Search Google Scholar
    • Export Citation
  • Harrison, D., and A. Robinson, 1978: Energy analysis of open regions of turbulent flows: Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2 , 185211.

    • Search Google Scholar
    • Export Citation
  • Held, I., R. Pierrehumbert, S. Garner, and K. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282 , 120.

  • Hosegood, P., M. C. Gregg, and M. H. Alford, 2006: Sub-mesoscale lateral density structure in the oceanic surface mixed layer. Geophys. Res. Lett., 33 .L22604, doi:10.1029/2006GL026797.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100 , 480482.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14 , 131151.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—Cold and warm fronts. J. Atmos. Sci., 36 , 16631680.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., 1995: Instability of surface and upper-tropospheric shear lines. J. Atmos. Sci., 52 , 32473262.

  • Klein, P., B. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper-ocean turbulence from high-3D-resolution simulations. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36 , 165176.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., P. Klein, and B. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36 , 15771590.

  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14 , 241256.

    • Search Google Scholar
    • Export Citation
  • McCreary, J., Y. Fukamachi, and P. Kundu, 1991: A numerical investigation of jets and eddies near an eastern ocean boundary. J. Geophys. Res., 96 , 25152534.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci., 42 , 17731774.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and I. Yavneh, 1998: Fluctuation growth and instability associated with a singularity of the balance equations. Phys. Fluids, 10 , 25872596.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2001: Instability and equilibration of centrifugally-stable stratified Taylor-Couette flow. Phys. Rev. Lett., 23 , 52705273.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35 , 15051517.

    • Search Google Scholar
    • Export Citation
  • Moore, D., and P. Saffman, 1975: The instability of a straight vortex filament in a strain field. Philos. Trans. Roy. Soc. London A, 346 , 413425.

    • Search Google Scholar
    • Export Citation
  • Müller, P., 1995: Ertel’s potential vorticity theorem in physical oceanography. Rev. Geophys., 28 , 277308.

  • Narimousa, S., and T. Maxworthy, 1985: Two-layer model of shear-driven coastal upwelling in the presence of bottom topography. J. Fluid Mech., 159 , 503531.

    • Search Google Scholar
    • Export Citation
  • Niiler, P., 1969: On the Ekman divergence in an oceanic jet. J. Geophys. Res., 74 , 70487051.

  • Nurser, A. J. G., and J. W. Zhang, 2000: Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res., 105 , 2185121868.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Paduan, J., and P. Niiler, 1990: A Lagrangian description of motion in northern California coastal transition filaments. J. Geophys. Res., 95 , 1809518109.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp.

  • Pierrehumbert, R., I. Held, and K. Swanson, 1994: Spectra of local and nonlocal two-dimensional turbulence. Chaos Solitons Fractals, 4 , 11111116.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64 , 25022520.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1993: Linear instability of a mixed-layer front. J. Geophys. Res., 98 , 1019510204.

  • Samelson, R. M., and D. C. Chapman, 1995: Evolution of the instability of a mixed-layer front. J. Geophys. Res., 100 , 67436759.

  • Shchepetkin, A. F., and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126 , 15411580.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 1995: Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res., 100 , 25432557.

  • Spall, M., 1997: Baroclinic jets in confluent flows. J. Phys. Oceanogr., 27 , 10541071.

  • Stone, P. H., 1966a: Frontogenesis by horizontal wind deformation fields. J. Atmos. Sci., 23 , 455465.

  • Stone, P. H., 1966b: On non-geostrophic baroclinic instability. J. Atmos. Sci., 23 , 390400.

  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35 , 24572466.

  • Thomas, L. N., 2008: Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity. Dyn. Atmos. Oceans, in press.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35 , 10861102.

  • Wang, D., 1993: Model of frontogenesis: Subduction and upwelling. J. Mar. Res., 51 , 497513.

  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61 , 440457.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1593 643 79
PDF Downloads 1389 422 35